
The Capstone-RISC-V Instruction Set
Reference

Table of Contents
1. Introduction . Ê4

1.1. Supported Properties . Ê4

1.2. Major Design Elements . Ê4

1.3. Capstone-RISC-V ISA Overview . Ê5

1.4. Caplifive Extension . Ê6

1.5. Assembly Mnemonics . Ê6

1.6. Notations . Ê6

1.7. Bibliography . Ê7

2. Programming Model . Ê8

2.1. Modes. Ê8

2.2. Domains . Ê8

2.3. Capabilities . Ê9

2.4. Extension to General-Purpose Registers . Ê12

2.5. Extension to Other Registers . Ê13

2.6. M-Mode Registers in C-Mode . Ê14

2.7. Added Registers . Ê14

2.8. Register Scopes . Ê16

2.9. Register Effects . Ê16

2.10. Context Layout in Memory . Ê16

2.11. Extension to Memory . Ê17

2.12. Instruction Set . Ê18

2.13. System Reset . Ê19

3. Capability Manipulation Instructions . Ê20

3.1. Cursor, Bounds, and Permissions Manipulation . Ê20

3.2. Type Manipulation . Ê25

3.3. Dropping . Ê27

3.4. Revocation . Ê28

4. Memory Access Instructions . Ê30

4.1. Load Capabilities . Ê30

4.2. Store Capabilities . Ê31

5. Control Flow Instructions . Ê33

5.1. Jump to Capabilities . Ê33

5.2. Domain Crossing . Ê34

6. Control and Status Instructions . Ê36

1

7. Adjustments to Existing Instructions . Ê38

7.1. Memory Access Instructions . Ê38

7.2. Control Flow Instructions . Ê41

7.3. Illegal Instructions . Ê42

8. Interrupts and Exceptions . Ê44

8.1. Exception Codes . Ê44

8.2. Exception Data . Ê44

8.3. Overview of Interrupt and Exception Handling . Ê45

8.4. H-Interrupt Status . Ê46

8.5. H-Interrupt Delegation . Ê46

8.6. Interaction with the Interrupt Controller . Ê46

8.7. H-Interrupt Delivery . Ê47

8.8. H-Interrupt Handling . Ê47

Appendix A: Instruction Listing . Ê48

A.1. Capstone Instructions . Ê48

A.2. Adjusted RV64IZicsr Memory Access Instructions . Ê49

2

Version Information: Version 1.0 +Caplifive

3

1. Introduction
Capstone is a CPU instruction set architecture (ISA) that creates a single unified architectural
abstraction for achieving multiple security goals, thus liberating software developers from the
burden of working with the distinct fundamental primitives exposed by numerous security
extensions that often do not interoperate easily.

1.1. Supported Properties
The ultimate goal of Capstone is to provide a unified architectural abstraction for multiple security
goals. This goal requires Capstone to support the following properties.

Exclusive access

Software should be guaranteed exclusive access to certain memory
regions if needed. This is in spite of the existence of software traditionally
entitled to higher privileges such as the OS kernel and the hypervisor.

Revocable delegation

Software components should be able to delegate authority to other
components in a revocable manner. For example, after an untrusted
library function has been granted access to a memory region, the caller
should be able to revoke this access.

Dynamically extensible hierarchy

The hierarchy of authority should be dynamically extensible, rather than
predefined by the architecture such as hypervisor-kernel-user found in
traditional platforms. This makes it possible to use the same set of
abstractions for memory isolation and memory sharing regardless of
where a software component lies in the hierarchy.

Safe context switching

A mechanism that protects the confidentiality and integrity of the
execution context of software during control flow transfers across
security domain boundaries, including asynchronous ones such as those
for interrupt and exception handling, should be provided.

1.2. Major Design Elements
The Capstone architecture design is based on the idea of capabilities, which are unforgeable tokens
that represent authority to perform memory accesses and control flow transfers, among other
operations. Capstone extends the basic capability model with new capability types including the

4

following.

Linear capabilities

Linear capabilities are guaranteed not to alias with other capabilities that
both grant memory access and are in architecturally visible locations (i.e.,
their actual contents might affect the execution of the whole system).
Operations on linear capabilities maintain this property. For example,
instructions can only move, but not copy, linear capabilities between
general-purpose registers. They can hence enable safe exclusive access to
memory regions. Capabilities that do not have this property are called
non-linear capabilities.

Revocation capabilities

Revocation capabilities cannot be used to perform memory accesses or
control flow transfers. Instead, they convey the authority to revoke other
capabilities. Each revocation capability is derived from a linear capability
and can later be used to revoke (i.e., invalidate) capabilities derived from
it. This mechanism enables revocable and arbitrarily extensible chains of
delegation of authority.

Uninitialised capabilities

Uninitialised capabilities convey write-only authority to memory. They
can be turned into linear capabilities after the memory region has been
ÒinitialisedÓ, i.e., when the whole memory region has been overwritten
with fresh data. Uninitialised capabilities enable safe initialisation of
memory regions and prevent secret leakage without incurring extra
performance overhead.

1.3. Capstone-RISC-V ISA Overview
While Capstone does not assume any specific modern ISA, we choose to propose a Capstone variant
to RISC-V due to its open nature and the availability of toolchains and simulators.

The Capstone-RISC-V ISA is an RV64IZicsr variant that makes the following types of changes to the
base architecture:

¥ Each general-purpose register is extended to 129 bits to accommodate 128-bit capabilities.

¥ Part of the machine state is extended and new instructions are added to support it.

¥ New instructions for manipulating capabilities are added.

¥ New instructions for memory accesses using capabilities are added.

¥ New instructions for control flow transfers using capabilities are added.

5

¥ Semantics of some existing instructions are adjusted to support capabilities.

¥ Semantics of interrupts and exceptions are adjusted to support capabilities.

1.4. Caplifive Extension
This document describes a version of Capstone-RISC-V with the Caplifive extension , which enables
Capstone to support guest machines with traditional access control abstractions. This is achieved
through the idea of caplification : it allows exposing capability-backed physical memory regions to
lower privilege levels through a modified PMP (Physical Memory Protection) structure which
requires valid capabilities in its entries instead of arbitrary ranges and permissions.

Compared to vanilla Capstone-RISC-V, Capstone-RISC-V with Caplifive defines domain internal
structures which can consist of privilege levels found in traditional architectures. The highest
privilege level operates using capabilities in the same way as in vanilla Capstone-RISC-V, whereas
lower privilege levels are exposed to an abstraction compatible with that on traditional
architectures. In particular, Caplifive allows software in lower privilege levels to access memory
using raw addresses and potentially through virtual memory, as long as the access is allowed
according to the capabilities configured in the modified PMP structure. Note that such details are
internal to each domain itself. Across domains, software interacts using capabilities in the same
way as in vanilla Capstone-RISC-V.

The Caplifive extension additionally includes the following changes:

¥ Introduction of C-mode and a mechanism to enter it from M-mode.

¥ Mechanism to post V-interrupts to a domain.

¥ Mechanism to expose capabilities in C-mode to lower privilege levels.

1.5. Assembly Mnemonics
Each Capstone-RISC-V instruction is given a mnemonic prefixed with CS.. In contexts where it is
clear we are discussing Capstone-RISC-V instructions, we will omit the CS. prefix for brevity.

In assembly code, the list of operands to an instruction is supplied following the instruction
mnemonic, with the operands separated by commas, in the order of rd , rs1 , rs2 , imm for any operand
the instruction expects.

1.6. Notations
When specifying the semantics of instructions, we use the following notations to represent the type
of each operand:

I

Integer register.

C

Capability register.

6

S

Sign-extended immediate.

Z

Zero-extended immediate.

1.7. Bibliography
The initial motivation, design, evaluation, and analysis of Capstone have been discussed in the
following paper:

¥ Capstone: A Capability-based Foundation for Trustless Secure Memory Access by Jason
Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, Prateek Saxena. In Proceedings
of the 32nd USENIX Security Symposium . Anaheim, CA, USA. August 2023.

7

https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

2. Programming Model
The Capstone-RISC-V ISA has extended part of the machine state, including both some registers and
the memory, to enable the storage and handling of capabilities.

2.1. Modes
At any point in time, a hart operates in one of the following modes (mode ID in parentheses):

¥ U-mode (0)

¥ S-mode (1)

¥ M-mode (3)

¥ C-mode (3)

U-, S-, and M-modes already exist in the base RV64IZicsr ISA. When operating in those modes, the
hart follows the same behaviours as defined in RV64IZicsr, e.g., using physical addresses for
memory accesses in M-mode and virtual addresses for memory accesses if the virtual memory is
enabled in S-mode and U-mode.

C-mode (capability mode) is an extra privilege level introduced in the Caplifive extension. It
replaces M-mode when CAPSTONE_EN = 1 (CAPSTONE_EN is a single-bit hart-local state). When operating
in C-mode, the hart is required to use capabilities for accessing the memory (including fetching
instructions). C-mode exposes the same set of interfaces to S-mode and U-mode as M-mode does. For
example, C-mode can handle undelegated interrupts and exceptions from S-mode and U-mode.
Whether CAPSTONE_EN = 1 is therefore transparent to S-mode and U-mode, which can interact with
C-mode in the same way as with M-mode.

2.2. Domains
When CAPSTONE_EN = 1, the run-time state of the system is organised in individual compartments
called domains . Each domain includes the execution context of a logical thread. A hart at any point
in time executes in exactly one domain.

When a domain is running on a hart, the following events are notable:

¥ Execution of CALL and RETURN instructions: Those instructions receive arguments that specify
another domain and trigger a synchronous domain switch.

¥ Exceptions: An exception is triggered by the execution of a specific instruction in the current
domain. Since the event is local to the domain itself, it does not trigger a domain switch. Instead,
exceptions are handled within the same domain that triggers them.

¥ Interrupts: Unlike exceptions, interrupts are triggered by external factors rather than by
specific instructions executed in the domain. We distinguish two types of interrupts which are
handled differently:

! H-interrupts (hardware interrupts): Those are interrupts the hart receives from interrupt
controllers (either hart-local or platform-wide). Since such interrupts are not intended for

8

specific domains (interrupt controllers and the I/O devices behind them are not aware of
domains), a switch to a dedicated interrupt handler domain is required to handle them.

! V-interrupts (virtual interrupts): Those are asynchronous events sent between domains.
Unlike H-interrupts, a V-interrupt targets a specific domain and therefore does not trigger a
domain switch, but is instead handled within the domain itself.

We call the first domain that runs on a hart after its reset the genesis domain of the hart.

2.3. Capabilities

2.3.1. Width

The width of a capability is 128 bits. We represent this as CLEN = 128 and CLENBYTES = 16. Note that
this does not affect the width of a raw address, which is XLEN = 64 bits, or equivalently, XLENBYTES =
8 bytes, same as in RV64IZicsr.

2.3.2. Fields

Each capability has the following architecturally-visible fields:

Table 1. Fields in a capability

Name Range Description

valid 0..1 Whether the capability is valid:
0 = invalid, 1 = valid

type 0..6 The type of the capability: 0 =
linear, 1 = non-linear, 2 =
revocation, 3 = uninitialised, 4 =
sealed, 5 = sealed-return

cursor 0..2^XLEN-1 Not applicable when type = 4
(sealed). The memory address
the capability points to (to be
used for the next memory
access)

base 0..2^XLEN-1 The base memory address of
the memory region associated
with the capability

end 0..2^XLEN-1 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). The end memory
address of the memory region
associated with the capability

9

Name Range Description

perms 0..7 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). One-hot encoded
permissions associated with the
capability: 0 = no access, 1 =
execute-only, 2 = write-only, 3 =
write-execute, 4 = read-only, 5 =
read-execute, 6 = read-write, 7 =
read-write-execute

async 0..1 Only applicable when type = 4
(sealed) or type = 5 (sealed-
return). How the capability is
sealed: 0 = synchronously, 1 =
asynchronously

reg 0..31 Only applicable when type = 5
(sealed-return). The index of the
general-purpose register to
restore the capability to

The range of the perms field has a partial order <=p defined as follows:

<=p = {
Ê (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7),
Ê (1, 1), (1, 3), (1, 5), (1, 7),
Ê (2, 2), (2, 3), (2, 6), (2, 7),
Ê (3, 3), (3, 7),
Ê (4, 4), (4, 5), (4, 6), (4, 7),
Ê (5, 5), (5, 7),
Ê (6, 6), (6, 7),
Ê (7, 7)
}

We say a capability c aliases with a capability d if and only if the intersection between [c.base,
c.end] and [d.base, d.end] is non-empty.

For two revocation capabilities c and d (i.e., c.type = d.type = 2), we say c <t d if and only if

¥ c aliases with d

¥ The creation of c was earlier than the creation of d

In addition to the above fields, an implementation also needs to maintain sufficient metadata to test
the <t relation. It will be clear that for any pair of aliasing revocation capabilities, the order of their
creations is well-defined.

! Note: the implementation of valid field

10

The valid field is involved in revocation , where it might be changed due to a revocation
operation on a different capability. A performant implementation, therefore, may prefer
not to maintain the valid field inline with the other fields.

! Note: addition/compression to capability fields

Implementations are free to maintain additional fields to capabilities, or compress the
representation of the above fields, as long as each capability fits in CLEN bits.

It is not required to be able to represent capabilities with all combinations of field values in
a compressed representation, as long as the following conditions are satisfied:

1. For load and store instructions that move a capability between a register and memory,
the value of the capability is preserved.

2. The resulting capability values of any operation are not more powerful than when the
same operation is performed on a Capstone-RISC-V implementation without
compression.

! More specifically, if an execution trace is valid (i.e., without exceptions) on the
compressed implementation, then it must also be valid on the uncompressed
implementation. For example, a trivial yet useless compression would be to store
nothing and always return a capability with valid = 0 .

For different types of capabilities, a specific subset of the fields is used. The table below summarises
the fields used for each type of capabilities.

Table 2. Fields used for each type of capabilities

Type type valid cursor base end perms async reg

Linear 0 Yes Yes Yes Yes Yes - -

Non-
linear

1 Yes Yes Yes Yes Yes - -

Revocatio
n

2 Yes Yes Yes Yes Yes - -

Uninitiali
sed

3 Yes Yes Yes Yes Yes - -

Sealed 4 Yes - Yes - - Yes -

Sealed-
return

5 Yes Yes - - Yes Yes

When the async field of a sealed-return capability is 0 (synchronous), some memory accesses are
granted by this capability. The following table shows the memory accesses granted in such
scenarios, where size is the size of the memory access in bytes.

NOTE In an earlier version a sealed-return capability has a cursor and grants direct

11

load/store accesses. This is no more the case.

In other scenarios and for other capability types without the perms field, no read/write/execute
memory accesses are granted by the capability.

The following figure shows the overview of different types of capabilities in the Capstone-RISC-V
ISA, and the operations that change the type of a capability.

Figure 1. Overview of different types of capabilities in the Capstone-RISC-V ISA

2.4. Extension to General-Purpose Registers
The Capstone-RISC-V ISA extends each of the 32 general-purpose registers, so it contains either a
capability or a raw XLEN-bit integer. The type of data contained in a register is maintained and type
confusion is not allowed, except for x0/c0 as discussed below. In assembly code, the type of data
expected in a register operand is indicated by the alias used for the register, as summarised in the
following table.

Index XLEN-bit integer Capability

0 x0/zero c0/cnull

1 x1/ra c1/cra

2 x2/sp c2/csp

3 x3/gp c3/cgp

4 x4/tp c4/ctp

5 x5/t0 c5/ct0

6 x6/t1 c6/ct1

7 x7/t2 c7/ct2

8 x8/s0/fp c8/cs0/cfp

9 x9/s1 c9/cs1

10 x10/a0 c10/ca0

12

Index XLEN-bit integer Capability

11 x11/a1 c11/ca1

12 x12/a2 c12/ca2

13 x13/a3 c13/ca3

14 x14/a4 c14/ca4

15 x15/a5 c15/ca5

16 x16/a6 c16/ca6

17 x17/a7 c17/ca7

18 x18/s2 c18/cs2

19 x19/s3 c19/cs3

20 x20/s4 c20/cs4

21 x21/s5 c21/cs5

22 x22/s6 c22/cs6

23 x23/s7 c23/cs7

24 x24/s8 c24/cs8

25 x25/s9 c25/cs9

26 x26/s10 c26/cs10

27 x27/s11 c27/cs11

28 x28/t3 c28/ct3

29 x29/t4 c29/ct4

30 x30/t5 c30/ct5

31 x31/t6 c31/ct6

x0/c0 is a read-only register that can be used both as an integer and as a capability, depending on
the context. When used as an integer, it has the value 0. When used as a capability, it has the value {
valid = 0, type = 0, cursor = 0, base = 0, end = 0, perms = 0 } . Any attempt to write to x0/c0
will be silently ignored (no exceptions are raised).

In this document, for i = 0, 1, É, 31 , we use x[i] to refer to the general-purpose register with
index i .

2.5. Extension to Other Registers

2.5.1. Program Counter

The program counter (pc) is changed to contain a capability only.

During the instruction fetch stage, an exception is raised when any of the following
conditions is met:

13

¥ Instruction access fault (1)

! pc.valid is 0 (invalid).

! pc.type is neither 0 (linear) nor 1 (non-linear).

! pc.perms is not executable (i.e., 1 <=p pc.perms does not hold).

! pc.cursor is not in the range [pc.base, pc.end - 3] .

¥ Instruction address misaligned (0)

! pc.cursor is not aligned to 4.

If no exception is raised:

1. The instruction pointed to by pc.cursor is fetched and executed.

2. Set pc.cursor to pc.cursor + 4 at the end of the instruction.

2.6. M-Mode Registers in C-Mode
The following M-mode CSRs are available in C-mode without any changes:

¥ mstatus

¥ medeleg

¥ mideleg

¥ mip

¥ mie

¥ mcause

¥ mtval

¥ mtval2

¥ mtinst

We also refer to the above CSRs using their aliases (with the m- prefix replaced c-) in the C-mode
context.

The M-mode CSRs mtvec, mscratch, and mepc have their corresponding capability-extended
replacements available in C-mode, as described in the following section.

2.7. Added Registers
The Capstone-RISC-V ISA adds the following registers. The +h sign indicates that the register is
available in the hypervisor extension.

Table 3. Additional Registers in the Capstone-RISC-V ISA

14

Mnemo
nic

CCSR
encoding

CSR
encoding

Description

ctvec 0x000 - The PC entry for the exception and V-interrupt handler (replacing
mtvec)

cih 0x001 - The sealed capability for the H-interrupt handler

cepc 0x002 - The exception program counter register (replacing mepc)

cscratc
h

0x004 - Replacing mscratch

cpmp0-
15

0x010-
0x01f

- Capability for use with MMU-based memory accesses

cis - 0x800 The H-interrupt status register

cid - 0x801 The H-interrupt delegation register. If a bit is set, the H-interrupt
is transformed into the corresponding V-interrupt directly

cic - 0x802 The H-interrupt number register. Indicates the type of the H-
interrupt

offsetm
mu

- 0x803 Offset to add to the logical address to obtain the physical address

Some of the registers only allow capability values and have special semantics related to the system-
wide machine state. They are referred to as capability control and status registers (CCSRs). Under
their respective constraints, CCSRs can be manipulated using control and status instructions .

The manipulation constraints for each CCSR are indicated below.

Table 4. Manipulation Constraints for CCSRs

Mnemonic Read Write

ctvec No constraint No constraint

cih Not allowed The original content must not be a capability

cepc No constraint No constraint

Some of the registers are added as control and status registers (CSRs). These registers are
manipulated by the same instructions that manipulate CSRs as in RV64IZicsr. When the
manipulation constraints of these additional CSRs are not satisfied, the behaviour of these
instructions follows the RV64IZicsr convention for other CSRs.

The manipulation constraints for each additional CSR are indicated below.

Table 5. Manipulation Constraints for Additional CSRs

Mnemonic Read Write

cis No constraint No constraint

offsetmmu No constraint No constraint

! Note: ctvec and cih

15

ctvec and cih should be handled differently.

ctvec is about the functionality of a domain only. A domain should be allowed to set ctvec
for itself. That also means it needs to be switched when switching domains.

cih is about the functionality of the system, which should normally only be set once. To
prevent any domain from setting cih , we require the original content of cih to be invalid
for an attempt to change it to succeed.

2.8. Register Scopes
Each register has a scope that is either of the following:

¥ Domain: the register is specific to a domain

¥ Hart: the register is specific not to a domain, but to a hart

2.8.1. Domain-Scoped Registers

¥ PC: pc

¥ GPRs: x1, x2, É, x31

¥ CCSRs: ctvec , cepc, cpmp0-15, cscratch

¥ 64-bit CSRs: mstatus, mideleg, medeleg, mip, mie, mcause, mtval , mtval2, mtinst , stvec , scause, stval ,
sepc, sscratch , satp , offsetmmu

Note that the complete domain-scope state also includes the privilege level, which is not reflected in
any of the registers above. Hence, we propose a modified mstatus register that includes the current
privilege level (0"Ñ"3) in bits 38 and 39, but only in the context of saving or restoring domain-
scoped registers.

2.8.2. Hart-Scoped Registers

Registers cis , cid , and cih are hart-scoped.

2.9. Register Effects
Domain-scoped registers that can immediately affect the behaviours of a domain in C-mode include
pc, ctvec , cscratch , mstatus, mideleg, medeleg, mip, mie. We call such registers C-effective registers .

2.10. Context Layout in Memory
Under certain circumstances, a set of registers need to be mapped to memory locations in an
architecturally-defined layout. For example, some registers need to be saved or restored upon
context switches. In such cases, unless otherwise specified, the layout for both domain-scoped
registers and C-effective registers follows the following order without any padding:

16

¥ C-effective registers (PC and CCSRs, 16 bytes): pc, ctvec , cscratch

¥ C-effective registers (CSRs, 8 bytes): mstatus, mideleg, medeleg, mip, mie

¥ offsetmmu (8 bytes)

¥ cpmp0-15, cepc (16 bytes)

¥ x1, x2, É, x31 (16 bytes)

¥ mcause, mtval , mtval2, mtinst , stvec , scause, stval , sepc, sscratch , satp (8 bytes)

NOTE

The layout described above takes care of the alignment maintains the same register
offsets for domain-scoped contexts and C-effective contexts, making it possible to
use a domain-scoped context as a C-effective context. When a C-effective context
swapped in (loaded into the CPU state), and a domain-scoped context is swapped
out (offloaded from the CPU state into memory), registers that are domain-scoped
but not C-effective are scrubbed.

2.11. Extension to Memory
The memory is addressed using an XLEN-bit integer at byte-level granularity.

In addition to raw integers, each CLEN-bit aligned address can also store a capability. The type of
data contained in a memory location is maintained and confusion of the type is not allowed.

! Note: maintaining the type of data

For a store operation that accesses the memory location [addr, addr + size) , the type of
data contained in the memory location is maintained as follows:

¥ If a capability is stored to the memory location [addr, addr + CLENBYTES), the type of
data contained in the memory location will become a capability, where addr is
CLENBYTES-byte aligned.

¥ If an integer is stored to the memory location [addr, addr + size) , it will make the CLEN
-bit aligned memory location [cbase, cend) an integer, where cbase = addr &
~(CLENBYTES - 1) and cend = cbase + CLENBYTES.

Note

In this document, when we say the memory location [addr, addr + CLENBYTES), we mean that
the following content will be loaded from or stored to the memory location:

¥ Depending on the type of data contained in the memory location, the content being
loaded from the memory location is either a capability at the memory location [addr,
addr + CLENBYTES), or an integer at the memory location [addr, addr + XLENBYTES).

¥ Depending on the type of data being stored to the memory location, the data is either
stored as a capability at the memory location [addr, addr + CLENBYTES], or an integer at
the memory location [addr, addr + XLENBYTES).

17

The physical memory can only be accessed through capabilities.

Address Space Access Method

[0, 2^XLEN) Capabilities

! Note: undefined behaviour

The following load results are undefined :

¥ Load an integer from a memory location when the last capability store to its CLENBYTES
-byte aligned memory location is more recent than the last integer store to the memory
location itself.

2.12. Instruction Set
The Capstone-RISC-V instruction set is based on the RV64IZicsr instruction set. The (uncompressed)
instructions are fixed 32-bit wide, and laid out in memory in little-endian order. In the encoding
space of the RV64IZicsr instruction set, Capstone-RISC-V instructions occupies the Òcustom-2Ó
subset, i.e., the opcode of all Capstone-RISC-V instructions is 0b1011011.

Capstone-RISC-V instruction encodings follow three basic formats: R-type, I-type and S-type, as
described below (more details are also provided in the RISC-V ISA Manual).

067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 2. R-type instruction format

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 3. I-type instruction format

067111214151920242531

0b1011011imm[4:0]func3rs1rs2imm[11:5]

Figure 4. S-type instruction format

R-type instructions receive up to three register operands, and I-type/S-type instructions receive up
to two register operands and a 12-bit-wide immediate operand.

The Capstone-RISC-V ISA also uses a register operand of R-type as an immediate operand in some
instructions, which is called register-immediate (RI) type for convenience in this document.

067111214151920242531

0b1011011rdfunc3rs1imm[4:0]func7

Figure 5. RI-type instruction format

The RI-type instruction format is derived from the R-type instruction format. An RI-type instruction
receives up to two register operands and a 5-bit-wide immediate operand.

18

https://github.com/riscv/riscv-isa-manual

Unless otherwise specified, the instructions introduced in Capstone-RISC-V on top of the base
RV64IZicsr instruction set are available in C-mode only. Attempts to execute them in other modes
trigger Illegal instruction (2) exceptions.

2.13. System Reset
Upon reset, the system state must conform to the following specifications.

¥ Each general-purpose register either contains an integer, or a capability with valid = 0
(invalid).

¥ No addressable memory location can contain a capability.

¥ ctvec , cih , and cepc contain either integers or capabilities with valid = 0 (invalid).

¥ cis = 0 .

¥ pc does not contain a capability.

¥ CAPSTONE_EN = 0

19

3. Capability Manipulation Instructions
Capstone provides instructions for creating, modifying, and destroying capabilities. Note that due to
the guarantee of provenance of capabilities, those instructions are the only way to manipulate
capabilities. In particular, it is not possible to manipulate capabilities by manipulating the content
of a memory location or register using other instructions.

3.1. Cursor, Bounds, and Permissions Manipulation

3.1.1. Capability Movement

Capabilities can be moved between registers with the MOVC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001010

Figure 6. MOVC instruction format

No exception could be raised for MOVC.

¥ If rs1 = rd , the instruction is a no-op.

¥ Otherwise

1. Write x[rs1] to x[rd] .

2. If x[rs1] is not a non-linear capability (i.e., type != 1), write cnull to x[rs1] .

3.1.2. Cursor Increment

The CINCOFFSET and CINCOFFSETIMM instructions increment the cursor of a capability by a given
amount (offset).

CINCOFFSET

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001100

Figure 7. CINCOFFSET instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

! x[rs2] is not an integer.

¥ Unexpected capability type (26)

! x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

20

If no exception is raised:

1. Set val to x[rs2] .

2. MOVC rd, rs1.

3. Set x[rd].cursor to x[rd].cursor + val .

CINCOFFSETIMM

06711121415192031

0b1011011rd (C)0b010rs1 (C)imm[11:0] (S)

Figure 8. CINCOFFSETIMM instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Unexpected capability type (26)

! x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. MOVC rd, rs1.

2. Set x[rd].cursor to x[rd].cursor + imm .

3.1.3. Cursor Setter

The cursor field of a capability can also be directly set with the SCC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000101

Figure 9. SCC instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

! x[rs2] is not an integer.

¥ Unexpected capability type (26)

! x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

21

If no exception is raised:

1. Set val to x[rs2] .

2. MOVC rd, rs1.

3. Set x[rd].cursor to val .

3.1.4. Field Query

The LCC instruction is used to read a field from a capability.

067111214151920242531

0b1011011rd (I)0b001rs1 (C)imm[4:0] (Z)0b0000100

Figure 10. LCC instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Unexpected capability type (26)

! imm = 2 and x[rs1] has type = 4 (sealed).

! imm = 4 and x[rs1] has type = 4 (sealed) or type = 5 (sealed-return).

! imm = 5 and x[rs1] has type = 4 (sealed) or type = 5 (sealed-return).

! imm = 6 and x[rs1] does not have type = 4 (sealed) or type = 5 (sealed-return).

! imm = 7 and x[rs1] does not have type = 5 (sealed-return).

If no exception is raised:

¥ If imm > 7, write zero to x[rd]

¥ Otherwise, write field to x[rd] according to the LCC multiplexing table .

Table 6. LCC multiplexing table

imm field

0 x[rs1].valid

1 x[rs1].type

2 x[rs1].cursor

3 x[rs1].base

4 x[rs1].end

5 x[rs1].perms

6 x[rs1].async

22

imm field

7 x[rs1].reg

3.1.5. Bounds Shrinking

The bounds (base and end fields) of a capability can be shrunk with the SHRINK instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)rs2 (I)0b0000001

Figure 11. SHRINK instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rd] is not a capability.

! x[rs1] is not an integer.

! x[rs2] is not an integer.

¥ Unexpected capability type (26)

! x[rd].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

¥ Illegal operand value (29)

! x[rs1] >= x[rs2] .

! x[rs1] < x[rd].base or x[rs2] > x[rd].end .

If no exception is raised:

1. Set x[rd].base to x[rs1] and x[rd].end to x[rs2] .

2. If x[rd].cursor < x[rs1] , set x[rd].cursor to x[rs1] .

3. If x[rd].cursor > x[rs2] , set x[rd].cursor to x[rs2] .

Another instruction, SHRINKTO, provides more convenience for certain common special cases of
shrinking.

06711121415192031

0b1011011rd0b000rs1imm[11:0]

Figure 12. SHRINKTO instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

23

¥ Unexpected capability type (26)

! x[rs1].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

¥ Illegal operand value (29)

! x[rs1].cursor < x[rs1].base or x[rs1].cursor + imm > x[rs1].end .

If no exception is raised:

1. MOVC rd, rs1.

2. Set x[rd].base to x[rd].cursor and x[rd].end to x[rd].cursor + imm - 1 .

3.1.6. Bounds Splitting

The SPLIT instruction can split a capability into two by splitting the bounds. It attempts to split the
capability x[rs1] into two capabilities, one with bounds [x[rs1].base, x[rs2]) and the other with
bounds [x[rs2], x[rs1].end) .

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000110

Figure 13. SPLIT instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

! x[rs2] is not an integer.

¥ Invalid capability (25)

! x[rs1].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rs1].type is neither 0 (linear) nor 1 (non-linear).

¥ Illegal operand value (29)

! x[rs2] < x[rs1].base or x[rs2] >= x[rs1].end .

If no exception is raised:

1. If rs1 = rd , the instruction is a no-op.

2. Set val to x[rs2] .

3. Write x[rs1] to x[rd] .

4. Set x[rs1].end to val , x[rs1].cursor to x[rs1].base .

24

5. Set x[rd].base to val + 1 , x[rd].cursor to val + 1 .

3.1.7. Permission Tightening

The TIGHTEN instruction tightens the permissions (perms field) of a capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)imm[4:0] (Z)0b0000010

Figure 14. TIGHTEN instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Unexpected capability type (26)

! x[rs1].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

¥ Illegal operand value (29)

! imm <= 7, and imm <=p x[rs1].perms does not hold.

If no exception is raised:

1. MOVC rd, rs1.

2. If imm > 7, set x[rd].perms to 0. Otherwise, set x[rd].perms to imm.

3.2. Type Manipulation
Some instructions can affect the type field of a capability directly. In general, the type field cannot
be set arbitrarily. Instead, it is changed as the side effect of certain semantically significant
operations.

3.2.1. Delinearisation

The DELIN instruction delinearises a linear capability.

067111214151920242531

0b1011011rd (C)0b001**0b0000011

Figure 15. DELIN instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

25

! x[rd] is not a capability.

¥ Unexpected capability type (26)

! x[rd].type is not 0 (linear).

If no exception is raised:

¥ Set x[rd].type to 1 (non-linear).

3.2.2. Initialisation

The INIT instruction transforms an uninitialised capability into a linear capability after its
associated memory region has been fully initialised (written with new data).

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001001

Figure 16. INIT instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

! x[rs2] is not an integer.

¥ Unexpected capability type (26)

! x[rs1].type is not 3 (uninitialised).

¥ Illegal operand value (29)

! x[rs1].cursor <= x[rs1].end .

If no exception is raised:

1. Set val to x[rs2] .

2. MOVC rd, rs1.

3. Set x[rd].type to 0 (linear), and x[rd].cursor to x[rd].base + val .

3.2.3. Sealing

The SEAL instruction seals a linear capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0000111

Figure 17. SEAL instruction format

26

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Unexpected capability type (26)

! x[rs1].type is not 0 (linear).

¥ Insufficient capability permissions (27)

! 6 <=p x[rs1].perms does not hold.

¥ Illegal operand value (29)

! The size of the memory region associated with x[rs1] is smaller than CLENBYTES * 64
bytes (i.e., x[rs1].end - x[rs1].base + 1 < CLENBYTES * 64).

! x[rs1].base is not aligned to CLENBYTES bytes.

! The content of the memory region [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) does not contain a capability.

If no exception is raised:

1. MOVC rd, rs1.

2. Set x[rd].type to 2 (sealed), and x[rd].async to 0 (synchronous).

3.3. Dropping
The DROP instruction invalidates a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0001011

Figure 18. DROP instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

If no exception is raised:

1. If x[rs1].valid is 0 (invalid), the instruction is a no-op.

2. Otherwise, set x[rs1].valid to 0 (invalid).

27

3.4. Revocation

3.4.1. Revocation Capability Creation

The MREV instruction creates a revocation capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001000

Figure 19. MREV instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Invalid capability (25)

! x[rs1].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rs1].type is not 0 (linear).

If no exception is raised:

1. Write x[rs1] to x[rd] .

2. Set x[rd].type to 2 (revocation).

3.4.2. Revocation Operation

The REVOKE instruction revokes a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0000000

Figure 20. REVOKE instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Invalid capability (25)

! x[rs1].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rs1].type is not 2 (revocation).

28

If no exception is raised:

1. For each capability c in the system (in either a register or memory location), c.valid is set
to 0 (invalid) if any of the following conditions are met:

! c.type is not 2 (revocation), c.valid is 1 (valid), and c aliases with x[rs1] .

! c.type is 2 (revocation), c.valid is 1 (valid), and x[rs1] <t c .

2. x[rs1].type is set to 0 (linear) if at least one of the following conditions are met:

! For every invalidated capability c, the type of c is non-linear (i.e., c.type is 1).

! 2 <=p x[rs1].perms does not hold.

3. Otherwise, set x[rs1].type to 3 (uninitialised), and x[rs1].cursor to x[rs1].base .

29

4. Memory Access Instructions
Capstone provides instructions to load and store capabilities from/to memory regions.

4.1. Load Capabilities
The LDC instruction loads a capability or an integer scalar from the memory depending on the type
of data at the specified memory location.

06711121415192031

0b1011011rd (C)0b011rs1 (C)imm[11:0] (S)

Figure 21. LDC instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Invalid capability (25)

! x[rs1].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rs1].type is not 0 (linear), 1 (non-linear) or 5 (sealed-return).

! x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

¥ Insufficient capability permissions (27)

! x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

¥ Capability out of bound (28)

! x[rs1].type is 0 (linear) or 1 (non-linear), and x[rs1].cursor + imm is not in the range
[x[rs1].base, x[rs1].end - CLENBYTES] .

! x[rs1].type is 5 (sealed-return), and x[rs1].cursor + imm is not in the range
[x[rs1].base + 3 * CLENBYTES, x[rs1].base + 64 * CLENBYTES - CLENBYTES].

¥ Load address misaligned (4)

! x[rs1].cursor + imm is not aligned to CLENBYTES bytes.

¥ Insufficient capability permissions (27)

! The data being loaded is not a scalar or a non-linear capability (i.e., type != 1),
x[rs1].type is 0 (linear) or 1 (non-linear), and 2 <=p x[rs1].perms does not hold.

If no exception is raised:

1. Set cap to x[rs1] .

2. Load the capability at the memory location cap.cursor + imm, cap.cursor + imm +

30

CLENBYTES) into x[rd] .

3. If x[rd].type is not 1 (non-linear), write cnull to the memory location [cap.cursor + imm,
cap.cursor + imm + CLENBYTES).

4.2. Store Capabilities
The STC instruction stores a capability or an integer scalar to the memory, depending on the type of
data contained in the specified source register.

067111214151920242531

0b1011011imm[4:0] (S)0b100rs1 (C)rs2 (C)imm[11:5] (S)

Figure 22. STC instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Invalid capability (25)

! x[rs1].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rs1].type is not 0 (linear), 1 (non-linear), 3 (uninitialised) or 5 (sealed-return).

! x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

¥ Insufficient capability permissions (27)

! x[rs1].type is 0 or 1, and 2 <=p x[rs1].perms does not hold.

¥ Illegal operand value (29)

! x[rs1].type is 3 (uninitialised) and imm is not 0.

¥ Capability out of bound (28)

! x[rs1].type is 0, 1, or 3, and x[rs1].cursor + imm is not in the range [x[rs1].base,
x[rs1].end - CLENBYTES].

! x[rs1].type is 5 or 6, and x[rs1].cursor + imm is not in the range [x[rs1].base + 3 *
CLENBYTES, x[rs1].base + 64 * CLENBYTES - CLENBYTES].

¥ Store/AMO address misaligned (6)

! x[rs1].cursor + imm is not aligned to CLENBYTES bytes.

If no exception is raised:

1. Store x[rs2] to the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
CLENBYTES).

2. If x[rs1].type is 3 (uninitialised), set x[rs1].cursor to x[rs1].cursor + CLENBYTES.

31

3. If x[rs2] is a capability and x[rs2].type is not 1 (non-linear), write cnull to x[rs2] .

32

5. Control Flow Instructions

5.1. Jump to Capabilities
The CJALR and CBNZ instructions allow jumping to a capability, i.e., setting the program counter to
a given capability, in a unconditional or conditional manner.

5.1.1. CJALR

06711121415192031

0b1011011rd (C)0b101rs1 (C)imm[11:0] (S)

Figure 23. CJALR instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

If no exception is raised:

1. Set cap to x[rs1] .

2. Set pc.cursor to pc.cursor + 4 , write pc to x[rd] .

3. Set cap.cursor to cap.cursor + imm , write cap to pc.

4. If rs1 != rd and x[rs1].type != 1 , write cnull to x[rs1] .

5.1.2. CBNZ

06711121415192031

0b1011011rd (C)0b110rs1 (I)imm[11:0] (S)

Figure 24. CBNZ instruction format

An exception is raised when any of the following conditions is met:

¥ Illegal instruction (2)

! cwrld is 0 (normal world).

¥ Unexpected operand type (24)

! x[rd] is not a capability.

! x[rs1] is not an integer.

If no exception is raised:

33

¥ If x[rs1] is 0, the instruction is a no-op.

¥ Otherwise

1. Write x[rd] to pc.

2. Set pc.cursor to pc.cursor + imm .

3. If x[rd].type != 1 , write cnull to x[rd] .

5.2. Domain Crossing
Domains in the Capstone-RISC-V ISA are individual software compartments that are protected by a
safe context switching mechanism, i.e., domain crossing . The mechanism is provided by the CALL
and RETURN instructions.

5.2.1. CALL

The CALL instruction is used to call a sealed capability, i.e., to switch to another domain .

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0100000

Figure 25. CALL instruction format

We define d as the following:

¥ If rs1 != 0 , then d is the content of x[rs1] .

¥ Otherwise, then d is the content of cih .

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! d is not a capability.

¥ Invalid capability (25)

! d.valid is 0 (invalid).

¥ Unexpected capability type (26)

! d.type is not 4 (sealed).

! d.async is not 0 (synchronous).

If no exception is raised:

1. If rs1 != 0 , MOVC cra, rs1, or otherwise CSRRW cra, cih, c0 .

2. Swap C-effective registers with the memory content at address cra.base .

3. Set cra.type to 5 (sealed-return), cra.cursor to cra.base , cra.reg to rd , and cra.async to 0

34

(synchronous).

5.2.2. RETURN

067111214151920242531

0b1011011rd (C)0b001rs1 (I)rs2 (I)0b0100001

Figure 26. RETURN instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rd] is not a capability.

! x[rs1] is not an integer.

¥ Invalid capability (25)

! x[rd].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rd].type is not 4 (sealed) or 5 (sealed-return).

! x[rd].type is 4 (sealed) and cih != cnull .

If no exception is raised:

When x[rd].async = 0 (synchronous):

1. Write x[rd] to cap and cnull to x[rd] .

2. Set pc.cursor to x[rs1] .

3. Swap C-effective registers with the memory content at address cap.base.

4. If cap.type = 5 and cap.reg != 0 , write cap to x[cap.reg] and set x[cap.reg].type to 4
(sealed). Otherwise, write cap to cih and set cih.type to 4 (sealed).

When x[rd].async = 1 (asynchronous):

1. Write x[rs2] to posted_ints .

2. Set x[rd].type to 4 (sealed), x[rd].async to 0 (synchronous).

3. Write the resulting x[rd] to cih , and cnull to x[rd] .

4. Set pc.cursor to x[rs1] .

5. Swap out the C-effective registers , and swap in domain-scoped registers from the memory
content at address cih.base .

6. Set mip to mip | posted_ints .

35

6. Control and Status Instructions
The CCSRRW instruction is used to read and write specified capability control and status registers
(CCSRs).

06711121415192031

0b1011011rd (C)0b111rs1 (C)imm[11:0] (Z)

Figure 27. CCSRRW instruction format

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

! x[rs1] is not a capability.

¥ Illegal operand value (29)

! imm does not correspond to the encoding of a valid CCSR.

If no exception is raised:

1. If the read constraint is satisfied

! The content of the CCSR specified by imm is written to x[rd] .

! If x[rd].type is not 1 (non-linear), write cnull to the CCSR specified by imm.

2. Otherwise, write cnull to x[rd] .

3. If the write constraint is satisfied

! Write x[rs1] to the CCSR specified by imm.

! If x[rs1].type is not 1 (non-linear), write cnull to x[rs1] .

4. Otherwise, preserve the current content of the CCSR specified by imm.

The CAPENTER instruction enables C-mode. Unlike the other added instructions which are for C-
mode only, CAPENTER can be used in M-mode.

When C-mode is enabled, the CAPENTER instruction also initialises the genesis capabilities and
create the initial execution context of the genesis domain.

067111214151920242531

0b1011011*0b001rs1 (I)rs2 (I)0b0001101

Figure 28. CAPENTER instruction format

An exception is raised when the following condition is met:

¥ Illegal instruction (2)

! CAPSTONE_EN = 1.

36

If no exception is raised:

¥ If rs1 == 0 and rs2 == 0

! Set pc = { valid = 1, type = 1, cursor = pc, base = INIT_CODE_BASE, end =
INIT_CODE_END - 1, perms = 7 }.

! Set x10 = { valid = 1, type = 1, cursor = INIT_DATA_BASE, base = INIT_DATA_BASE, end
= INIT_DATA_END - 1, perms = 7 } .

! Set x11 = { valid = 1, type = 2, cursor = 0, base = 0, end = 2^XLEN - 1, perms = 7
} , which, once revoked, will invalidate the initial capabilities in pc and x10 as defined
above.

! Set CAPSTONE_EN to 1.

¥ Otherwise

! Set pc = { valid = 1, type = 1, cursor = pc, base = x[rs1], end = x[rs2] - 1, perms
= 7 } .

! Set x10 = { valid = 1, type = 1, cursor = 0, base = 0, end = x[rs1] - 1, perms = 7
} .

! Set x11 = { valid = 1, type = 1, cursor = x[rs2], base = x[rs2], end = 2^XLEN - 1,
perms = 7 } .

! Set CAPSTONE_EN to 1.

INIT_CODE_BASE, INIT_CODE_END, INIT_DATA_BASE, and INIT_DATA_END are implementation-defined.

37

7. Adjustments to Existing Instructions
For most of the existing instructions in RV64IZicsr, their behaviour is unmodified. The cursor field
(if type != 4) or base field (if type = 4) of the capability is used if a register containing a capability is
used as an operand.

The following instructions in RV64IZicsr are adjusted in Capstone:

¥ For memory access instructions, they are adjusted to use capabilities as addresses for
memory access.

¥ For control flow instructions, they are adjusted for the case where the program counter is
a capability.

¥ Some instructions in RV64IZicsr become illegal instructions in the Capstone-RISC-V ISA.

7.1. Memory Access Instructions
In RV64IZicsr, memory access instructions include load instructions (i.e., lb , lh , ld , lw, lbu , lhu , lwu),
and store instructions (i.e., sb, sh, sw, sd). These instructions take an integer as a raw address, and
load or store a value from/to this address. In Capstone, these instructions are extended to take a
capability as an address when executed in C-mode . In non-C modes, the behaviours of those
instructions are unchanged.

7.1.1. Load Instructions

In the Capstone-RISC-V ISA, RV64IZicsr load instructions are modified to load integers of different
sizes using capabilities.

! Note: size of load instructions

The size used in this sections is the size (in bytes) of the integer being loaded.

Mnemonic size

lb 1

lbu 1

lh 2

lhu 2

lw 4

lwu 4

ld 8

An exception is raised when any of the following conditions is met:

¥ Unexpected operand type (24)

38

! x[rs1] is not a capability.

¥ Invalid capability (25)

! x[rs1].valid is 0 (invalid).

¥ Unexpected capability type (26)

! x[rs1].type is not 0 (linear), 1 (non-linear) or 5 (sealed-return).

! x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

¥ Insufficient capability permissions (27)

! x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

¥ Capability out of bound (28)

! x[rs1].type is 0 (linear) or 1 (non-linear), and x[rs1].cursor + imm is not in the range
[x[rs1].base, x[rs1].end - size] .

! x[rs1].type is 5 (sealed-return), and x[rs1].cursor + imm is not in the range
[x[rs1].base + 3 * CLENBYTES, x[rs1].base + 64 * CLENBYTES - size] .

¥ Load address misaligned (4)

! x[rs1].cursor + imm is not aligned to size bytes.

06711121415192031

0000011rd (I)0b000rs1 (C)imm[11:0] (S)

Figure 29. lb instruction format

06711121415192031

0000011rd (I)0b001rs1 (C)imm[11:0] (S)

Figure 30. lh instruction format

06711121415192031

0000011rd (I)0b010rs1 (C)imm[11:0] (S)

Figure 31. lw instruction format

06711121415192031

0000011rd (I)0b011rs1 (C)imm[11:0] (S)

Figure 32. ld instruction format

If no exception is raised:

¥ Load the content at the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
size) as a signed integer to x[rd] .

06711121415192031

0000011rd (I)0b100rs1 (C)imm[11:0] (S)

Figure 33. lbu instruction format

39

