
The Capstone-RISC-V Instruction Set
Reference

Table of Contents
1. Introduction. 4

1.1. Properties to Support. 4

1.2. Major Design Elements . 4

1.3. Capstone-RISC-V ISA Overview . 5

1.4. Assembly Mnemonics . 6

1.5. Notations. 6

1.6. Bibliography. 7

2. Programming Model . 8

2.1. Capabilities . 8

2.2. Extension to General-Purpose Registers . 11

2.3. Extension to Other Registers . 13

2.4. Added Registers. 14

2.5. Extension to Memory. 15

2.6. Instruction Set . 17

2.7. System Reset . 17

3. Capability Manipulation Instructions . 19

3.1. Cursor, Bounds, and Permissions Manipulation. 19

3.2. Type Manipulation . 24

3.3. Dropping. 26

3.4. Revocation . 27

4. Memory Access Instructions . 29

4.1. Load Capabilities . 29

4.2. Store Capabilities . 31

5. Control Flow Instructions. 33

5.1. Jump to Capabilities . 33

5.2. Domain Crossing. 34

5.3. World Switching . 36

6. Control and Status Instructions . 40

7. Adjustments to Existing Instructions. 41

7.1. Memory Access Instructions . 41

7.2. Control Flow Instructions. 45

7.3. Illegal Instructions . 46

8. Interrupts and Exceptions . 47

8.1. Exception and Exit Codes . 47

1

8.2. Exception Data . 48

8.3. Handling of Secure-World Interrupts . 49

8.4. Handling of Secure-World Exceptions. 51

Appendix A: Instruction Listing . 54

A.1. Capstone Instructions . 54

A.2. Extended RV64IZicsr Memory Access Instructions . 55

Appendix B: Comparison with Other Capability-Based ISA Extensions to RISC-V 58

B.1. Commonalities . 58

B.2. Differences. 59

Bibliography . 60

2

Version Information: Version 1.0

3

1. Introduction
Capstone is a novel CPU instruction set architecture (ISA) that creates a single unified architectural
abstraction for achieving multiple security goals, thus liberating software developers from the
burden of working with the distinct fundamental primitives exposed by numerous security
extensions that often do not interoperate easily.

1.1. Properties to Support
The ultimate goal of Capstone is to provide a unified architectural abstraction for multiple security
goals. This goal requires Capstone to support the following properties.

Exclusive access

Software should be guaranteed exclusive access to certain memory
regions if needed. This is in spite of the existence of software traditionally
entitled to higher privileges such as the OS kernel and the hypervisor.

Revocable delegation

Software components should be able to delegate authority to other
components in a revocable manner. For example, after an untrusted
library function has been granted access to a memory region, the caller
should be able to revoke this access.

Dynamically extensible hierarchy

The hierarchy of authority should be dynamically extensible, rather than
predefined by the architecture such as hypervisor-kernel-user found in
traditional platforms. This makes it possible to use the same set of
abstractions for memory isolation and memory sharing regardless of
where a software component lies in the hierarchy.

Safe context switching

A mechanism that protects the confidentiality and integrity of the
execution context of software during control flow transfers across
security domain boundaries, including asynchronous ones such as those
for interrupt and exception handling, should be provided.

1.2. Major Design Elements
The Capstone architecture design is based on the idea of capabilities, which are unforgeable tokens
that represent authority to perform memory accesses and control flow transfers, among other
operations. Capstone extends the traditional capability model with new capability types including

4

the following.

Linear capabilities

Linear capabilities are guaranteed not to alias with other capabilities that
both grant memory access and are in architecturally visible locations (i.e.,
their actual contents might affect the execution of the whole system).
Operations on linear capabilities maintain this property. For example,
instructions can only move, but not copy, linear capabilities between
general-purpose registers. They can hence enable safe exclusive access to
memory regions. Capabilities that do not have this property are called
non-linear capabilities.

Revocation capabilities

Revocation capabilities cannot be used to perform memory accesses or
control flow transfers. Instead, they convey the authority to revoke other
capabilities. Each revocation capability is derived from a linear capability
and can later be used to revoke (i.e., invalidate) capabilities derived from
it. This mechanism enables revocable and arbitrarily extensible chains of
delegation of authority.

Uninitialised capabilities

Uninitialised capabilities convey write-only authority to memory. They
can be turned into linear capabilities after the memory region has been
“initialised”, i.e., when the whole memory region has been overwritten
with fresh data. Uninitialised capabilities enable safe initialisation of
memory regions and prevent secret leakage without incurring extra
performance overhead.

1.3. Capstone-RISC-V ISA Overview
While Capstone does not assume any specific modern ISA, we choose to propose a Capstone
extension to RISC-V due to its open nature and the availability of toolchains and simulators.

The Capstone-RISC-V ISA is an RV64IZicsr extension that makes the following types of changes to
the base architecture:

Registers

• Each general-purpose register is extended to 129 bits to accommodate 128-bit capabilities.

• New control and status registers (CSRs) are added.

• Capability control and status registers (capability CSRs or CCSRs) are added.

• New instructions for manipulating capabilities in general-purpose registers or CCSRs are

5

added.

Memory

• The physical memory is partitioned into two disjoint regions, i.e., the normal memory and the
secure memory.

◦ The normal memory is exclusively for accesses through capabilities.

◦ The secure memory is exclusively for accesses through the virtual memory.

• Each memory location can either contains an integer or a capability, and the confusion
between the two is not allowed.

• New instructions for accessing capabilities in the memory or accessing memory using
capabilities are added.

World

• Software components are allowed to run in either of the two worlds, i.e., the normal world
and the secure world.

◦ The normal world follows the traditional privilege levels, allows both capability-based
accesses and virtual memory accesses, and is therefore compatible with existing
software.

◦ The secure world follows the Capstone design, limits memory accesses to capability-
based accesses and provides the security guarantees of Capstone.

Control flow instructions

• New instructions for control flow transfers using capabilities are added.

• New instructions for safe context switching in the secure world are added.

• New instructions for world switching are added.

Interrupts and exceptions

• New exception types are added.

• A new mechanism for handling interrupts and exceptions in the secure world is added.

Existing instructions

• Some existing instructions are adjusted, extended or disabled.

1.4. Assembly Mnemonics
Each Capstone-RISC-V instruction is given a mnemonic prefixed with CS.. In contexts where it is
clear we are discussing Capstone-RISC-V instructions, we will omit the CS. prefix for brevity.

In assembly code, the list of operands to an instruction is supplied following the instruction
mnemonic, with the operands separated by commas, in the order of rd, rs1, rs2, imm for any operand
the instruction expects.

1.5. Notations
When specifying the semantics of instructions, we use the following notations to represent the type
of each operand:

6

I

Integer register.

C

Capability register.

S

Sign-extended immediate.

Z

Zero-extended immediate.

1.6. Bibliography
The initial motivation, design, evaluation, and analysis of Capstone have been discussed in the
following paper:

• Capstone: A Capability-based Foundation for Trustless Secure Memory Access by Jason
Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, Prateek Saxena. In Proceedings
of the 32nd USENIX Security Symposium. Anaheim, CA, USA. August 2023.

7

https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

2. Programming Model
The Capstone-RISC-V ISA has extended part of the machine state, including both some registers and
the memory, to enable the storage and handling of capabilities.

2.1. Capabilities

2.1.1. Width

The width of a capability is 128 bits. We represent this as CLEN = 128 and CLENBYTES = 16. Note that
this does not affect the width of a raw address, which is XLEN = 64 bits, or equivalently, XLENBYTES =
8 bytes, same as in RV64IZicsr.

2.1.2. Fields

Each capability has the following architecturally-visible fields:

Table 1. Fields in a capability

Name Range Description

valid 0..1 Whether the capability is valid:
0 = invalid, 1 = valid

type 0..6 The type of the capability: 0 =
linear, 1 = non-linear, 2 =
revocation, 3 = uninitialised, 4 =
sealed, 5 = sealed-return, 6 =
exit

cursor 0..2^XLEN-1 Not applicable when type = 4
(sealed). The memory address
the capability points to (to be
used for the next memory
access)

base 0..2^XLEN-1 The base memory address of
the memory region associated
with the capability

end 0..2^XLEN-1 Not applicable when type = 4
(sealed), type = 5 (sealed-
return), or type = 6 (exit). The
end memory address of the
memory region associated with
the capability

8

Name Range Description

perms 0..7 Not applicable when type = 4
(sealed), type = 5 (sealed-
return), or type = 6 (exit). One-
hot encoded permissions
associated with the capability: 0
= no access, 1 = execute-only, 2 =
write-only, 3 = write-execute, 4 =
read-only, 5 = read-execute, 6 =
read-write, 7 = read-write-
execute

async 0..2 Only applicable when type = 4
(sealed) or type = 5 (sealed-
return). How the capability is
sealed: 0 = synchronously, 1 =
upon exception, 2 = upon
interrupt

reg 0..31 Only applicable when type = 5
(sealed-return). The index of the
general-purpose register to
restore the capability to

The range of the perms field has a partial order <=p defined as follows:

<=p = {
 (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7),
 (1, 1), (1, 3), (1, 5), (1, 7),
 (2, 2), (2, 3), (2, 6), (2, 7),
 (3, 3), (3, 7),
 (4, 4), (4, 5), (4, 6), (4, 7),
 (5, 5), (5, 7),
 (6, 6), (6, 7),
 (7, 7)
}

We say a capability c aliases with a capability d if and only if the intersection between [c.base,
c.end) and [d.base, d.end) is non-empty.

For two revocation capabilities c and d (i.e., c.type = d.type = 2), we say c <t d if and only if

• c aliases with d

• The creation of c was earlier than the creation of d

In addition to the above fields, an implementation also needs to maintain sufficient metadata to test
the <t relation. It will be clear that for any pair of aliasing revocation capabilities, the order of their
creations is well-defined.

9

▼ Note: the implementation of valid field

The valid field is involved in revocation, where it might be changed due to a revocation
operation on a different capability. A performant implementation, therefore, may prefer
not to maintain the valid field inline with the other fields.

▼ Note: addition/compression to capability fields

Implementations are free to maintain additional fields to capabilities, or compress the
representation of the above fields, as long as each capability fits in CLEN bits.

It is not required to be able to represent capabilities with all combinations of field values in
a compressed representation, as long as the following conditions are satisfied:

1. For load and store instructions that move a capability between a register and memory,
the value of the capability is preserved.

2. The resulting capability values of any operation are not more powerful than when the
same operation is performed on a Capstone-RISC-V implementation without
compression.

◦ More specifically, if an execution trace is valid (i.e., without exceptions) on the
compressed implementation, then it must also be valid on the uncompressed
implementation. For example, a trivial yet useless compression would be to store
nothing and always return a capability with valid = 0.

For different types of capabilities, a specific subset of the fields is used. The table below summarises
the fields used for each type of capabilities.

Table 2. Fields used for each type of capabilities

Type type valid cursor base end perms async reg

Linear 0 Yes Yes Yes Yes Yes - -

Non-
linear

1 Yes Yes Yes Yes Yes - -

Revocatio
n

2 Yes Yes Yes Yes Yes - -

Uninitiali
sed

3 Yes Yes Yes Yes Yes - -

Sealed 4 Yes - Yes - - Yes -

Sealed-
return

5 Yes Yes Yes - - Yes Yes

Exit 6 Yes Yes Yes - - - -

When the async field of a sealed-return capability is 0 (synchronous), or when the type field of the
capability is 6 (exit), some memory accesses are granted by this capability. The following table
shows the memory accesses granted in such scenarios, where size is the size of the memory access

10

in bytes.

Table 3. Memory accesses granted by sealed-return and exit capabilities

Capabilit
y type

asy
nc

Read Write Exec
ute

Sealed-
return

0 cursor in [base + 3 * CLENBYTES,
base + 33 * CLENBYTES - size]

cursor in [base + 3 * CLENBYTES,
base + 33 * CLENBYTES - size]

No

Exit - cursor in [base + 3 * CLENBYTES,
base + 33 * CLENBYTES - size]

cursor in [base + 3 * CLENBYTES,
base + 33 * CLENBYTES - size]

No

In other scenarios and for other capability types without the perms field, no read/write/execute
memory accesses are granted by the capability.

The following figure shows the overview of different types of capabilities in Capstone-RISC-V, and
the operations that change the type of a capability.

Figure 1. Overview of different types of capabilities in Capstone-RISC-V

2.2. Extension to General-Purpose Registers
The Capstone-RISC-V ISA extends each of the 32 general-purpose registers, so it contains either a
capability or a raw XLEN-bit integer. The type of data contained in a register is maintained and

11

confusion of the type is not allowed, except for x0/c0 as discussed below. In assembly code, the type
of data expected in a register operand is indicated by the alias used for the register, as summarised
in the following table.

Index XLEN-bit integer Capability

0 x0/zero c0/cnull

1 x1/ra c1/cra

2 x2/sp c2/csp

3 x3/gp c3/cgp

4 x4/tp c4/ctp

5 x5/t0 c5/ct0

6 x6/t1 c6/ct1

7 x7/t2 c7/ct2

8 x8/s0/fp c8/cs0/cfp

9 x9/s1 c9/cs1

10 x10/a0 c10/ca0

11 x11/a1 c11/ca1

12 x12/a2 c12/ca2

13 x13/a3 c13/ca3

14 x14/a4 c14/ca4

15 x15/a5 c15/ca5

16 x16/a6 c16/ca6

17 x17/a7 c17/ca7

18 x18/s2 c18/cs2

19 x19/s3 c19/cs3

20 x20/s4 c20/cs4

21 x21/s5 c21/cs5

22 x22/s6 c22/cs6

23 x23/s7 c23/cs7

24 x24/s8 c24/cs8

25 x25/s9 c25/cs9

26 x26/s10 c26/cs10

27 x27/s11 c27/cs11

28 x28/t3 c28/ct3

29 x29/t4 c29/ct4

30 x30/t5 c30/ct5

12

Index XLEN-bit integer Capability

31 x31/t6 c31/ct6

x0/c0 is a read-only register that can be used both as an integer and as a capability, depending on
the context. When used as an integer, it has the value 0. When used as a capability, it has the value {
valid = 0, type = 0, cursor = 0, base = 0, end = 0, perms = 0 }. Any attempt to write to x0/c0
will be silently ignored (no exceptions are raised).

In this document, for i = 0, 1, …, 31, we use x[i] to refer to the general-purpose register with
index i.

2.3. Extension to Other Registers

2.3.1. Program Counter

Similar to the general-purpose registers, the program counter (pc) is extended to contain a
capability or an integer.

▼ Note: what is cwrld

cwrld is a special register added in Capstone-RISC-V that indicates the world currently in
execution. Please see Added Registers for details.

During the instruction fetch stage, an exception is raised when any of the following
conditions is met:

Normal world (i.e., cwrld = 0)

• cwrld is 0 (normal world) and any of the conditions for RV64IZicsr is met.

• Instruction access fault (1)

◦ pc does not contain an integer.

Secure world (i.e., cwrld = 1)

• Instruction access fault (1)

◦ pc does not contain a capability.

◦ pc.valid is 0 (invalid).

◦ pc.type is neither 0 (linear) nor 1 (non-linear).

◦ pc.perms is not executable (i.e., 1 <=p pc.perms does not hold).

◦ pc.cursor is not in the range [pc.base, pc.end - 4].

• Instruction address misaligned (0)

◦ pc.cursor is not aligned to 4.

13

If no exception is raised:

Secure world (i.e., cwrld = 1):

1. The instruction pointed to by pc.cursor is fetched and executed.

2. Set pc.cursor to pc.cursor + 4 at the end of the instruction.

Normal world (i.e., cwrld = 0):

1. The instruction pointed to by pc is fetched and executed.

2. Set pc to pc + 4 at the end of the instruction.

2.4. Added Registers
The Capstone-RISC-V ISA adds the following registers.

Table 4. Additional Registers in Capstone-RISC-V ISA

Mnemo
nic

CCSR
encoding

CSR
encoding

Description

ceh 0x000 - The sealed capability or PC entry for the exception handler

cinit 0x002 - The initial capability covering the entire address space of the
secure memory

epc 0x003 - The exception program counter register

cwrld - - The world currently in execution. 0 = normal world, 1 = secure
world

normal_
pc

- - The program counter for the normal world before the secure
world is entered

normal_
sp

- - The stack pointer for the normal world before the secure world is
entered

switch_
reg

- - The index of the general-purpose register used when switching
worlds

switch_
cap

0x004 - The capability used to store contexts when switching worlds
asynchronously

exit_re
g

- - The index of the general-purpose register for receiving the exit
code when exiting the secure world

tval - 0x801 The exception data (trap value) register

cause - 0x802 The exception cause register

emode - 0x804 The encoding mode of the machine. 0 = integer encoding mode, 1
= capability encoding mode

14

Some of the registers only allow capability values and have special semantics related to the system-
wide machine state. They are referred to as capability control and status registers (CCSRs). Under
their respective constraints, CCSRs can be manipulated using control and status instructions.

The manipulation constraints for each CCSR are indicated below.

Table 5. Manipulation Constraints for CCSRs

Mnemonic Read Write

ceh Secure world Secure world

cinit Normal world; one-time only Not allowed

epc Secure world Secure world

switch_cap Normal world Normal world

Some of the registers are added as control and status registers (CSRs). These registers are
manipulated by the same instructions that manipulate CSRs as in RV64IZicsr. When the
manipulation constraints of these additional CSRs are not satisfied, the behaviour of these
instructions follows the RV64IZicsr convention for other CSRs.

The manipulation constraints for each additional CSR are indicated below.

Table 6. Manipulation Constraints for Additional CSRs

Mnemonic Read Write

tval Secure world Secure world

cause Secure world Secure world

emode Normal world Normal world

▼ Note: ceh

ceh is about the functionality of a domain only. A domain should be allowed to set ceh for
itself. That also means it needs to be switched when switching domains.

▼ Note: cinit

cinit is a CCSR that is used to bootstrap capabilities after a system reset. control and status
instructions can be used to read the initial capability in cinit and write it to a general-
purpose register. This operation can only be performed once after each reset. Any attempt
to write cinit will be silently ignored, and any attempt to read it after the first time will
return the content of cnull.

2.5. Extension to Memory
The memory is addressed using an XLEN-bit integer at byte-level granularity. In addition to raw
integers, each CLEN-bit aligned address can also store a capability. The type of data contained in a
memory location is maintained and confusion of the type is not allowed.

15

▼ Note: maintaining the type of data

For a store operation that accesses the memory location [addr, addr + size), the type of
data contained in the memory location is maintained as follows:

• If a capability is stored to the memory location [addr, addr + CLENBYTES), the type of
data contained in the memory location will become a capability, where addr is
CLENBYTES-byte aligned.

• If an integer is stored to the memory location [addr, addr + size), it will make the CLEN
-bit aligned memory location [cbase, cend) an integer, where cbase = addr &
~(CLENBYTES - 1) and cend = cbase + CLENBYTES.

Note

In this document, when we say the memory location [addr, addr + CLENBYTES], we mean that
the following content will be loaded from or stored to the memory location:

• Depending on the type of data contained in the memory location, the content being
loaded from the memory location is either a capability at the memory location [addr,
addr + CLENBYTES], or an integer at the memory location [addr, addr + XLENBYTES].

• Depending on the type of data being stored to the memory location, the data is either
stored as a capability at the memory location [addr, addr + CLENBYTES], or an integer at
the memory location [addr, addr + XLENBYTES].

The physical memory is divided into two disjoint regions: the normal memory and the secure
memory. While the normal memory is only accessible through Memory Management Unit (MMU),
the secure memory can only be accessed through capabilities.

Hence, we have the following constraints on the memory accesses in different worlds.

Table 7. Memory Accesses in the normal world and secure world

World Memory Management Unit (MMU) Capabilities

Normal world Yes Yes

Secure world No Yes

The bounds of the secure memory [SBASE, SEND) are implementation-defined. But both SBASE and
SEND are required to be CLENBYTES-byte aligned.

Memory Region Address Space Access Method

Normal memory [0, SBASE) U [SEND, 2^XLEN) MMU

Secure memory [SBASE, SEND) Capabilities

▼ Note: undefined behaviour

16

The following load results are undefined:

• Load an integer from a memory location when the last capability store to its CLENBYTES
-byte aligned memory location is more recent than the last integer store to the memory
location itself.

2.6. Instruction Set
The Capstone-RISC-V instruction set is based on the RV64IZicsr instruction set. The (uncompressed)
instructions are fixed 32-bit wide, and laid out in memory in little-endian order. In the encoding
space of the RV64IZicsr instruction set, Capstone-RISC-V instructions occupies the “custom-2”
subset, i.e., the opcode of all Capstone-RISC-V instructions is 0b1011011.

Capstone-RISC-V instruction encodings follow three basic formats: R-type, I-type and S-type, as
described below (more details are also provided in the RISC-V ISA Manual).

067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 2. R-type instruction format

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 3. I-type instruction format

067111214151920242531

0b1011011imm[4:0]func3rs1rs2imm[11:5]

Figure 4. S-type instruction format

R-type instructions receive up to three register operands, and I-type/S-type instructions receive up
to two register operands and a 12-bit-wide immediate operand.

Capstone-RISC-V also uses a register operand of R-type as an immediate operand in some
instructions, which is called register-immediate (RI) type for convenience in this document.

067111214151920242531

0b1011011rdfunc3rs1imm[4:0]func7

Figure 5. RI-type instruction format

The so-called RI-type instructions are actually derivatives of R-type instructions. They receive up to
two register operands and a 5-bit-wide immediate operand.

2.7. System Reset
Upon reset, the system state must conform to the following specifications.

17

https://github.com/riscv/riscv-isa-manual

• Each general-purpose register either contains an integer, or a capability with valid = 0
(invalid).

• No addressable memory location can contain a capability.

• ceh, epc and switch_cap contain either an integer or a capability with valid = 0 (invalid).

• cwrld = 0 (normal world).

• emode = 0 (integer encoding mode).

• cinit = { valid = 1, type = 0, cursor = SBASE, base = SBASE, end = SEND, perms = 7 }.

• Specifications for RV64IZicsr.

18

3. Capability Manipulation Instructions
Capstone-RISC-V provides instructions for creating, modifying, and destroying capabilities. Note
that due to the guarantee of provenance of capabilities, those instructions are the only way to
manipulate capabilities. In particular, it is not possible to manipulate capabilities by manipulating
the content of a memory location or register using other instructions.

3.1. Cursor, Bounds, and Permissions Manipulation

3.1.1. Capability Movement

Capabilities can be moved between registers with the MOVC instruction.

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001010

Figure 6. MOVC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability

If no exception is raised:

• If rs1 = rd, the instruction is a no-op.

• Otherwise

1. Write x[rs1] to x[rd]

2. If x[rs1] is not a non-linear capability (i.e., type != 1), write cnull to x[rs1].

3.1.2. Cursor Increment

The CINCOFFSET and CINCOFFSETIMM instructions increment the cursor of a capability by a given
amount (offset).

CINCOFFSET

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001100

Figure 7. CINCOFFSET instruction format

19

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L412
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L465

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. Set val to x[rs2].

2. MOVC rd, rs1.

3. Set x[rd].cursor to x[rd].cursor + val.

CINCOFFSETIMM

Sail definition

06711121415192031

0b1011011rd (C)0b010rs1 (C)imm[11:0] (S)

Figure 8. CINCOFFSETIMM instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. MOVC rd, rs1.

2. Set x[rd].cursor to x[rd].cursor + imm.

3.1.3. Cursor Setter

The cursor field of a capability can also be directly set with the SCC instruction.

Sail definition

20

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L499
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L193

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000101

Figure 9. SCC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. Set val to x[rs2].

2. MOVC rd, rs1.

3. Set x[rd].cursor to val.

3.1.4. Field Query

The LCC instruction is used to read a field from a capability.

Sail definition

067111214151920242531

0b1011011rd (I)0b001rs1 (C)imm[4:0] (Z)0b0000100

Figure 10. LCC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ imm = 2 and x[rs1] has type = 4 (sealed).

◦ imm = 4 and x[rs1] has type = 4 (sealed), type = 5 (sealed-return), or type = 6 (exit).

◦ imm = 5 and x[rs1] has type = 4 (sealed), type = 5 (sealed-return), or type = 6 (exit).

◦ imm = 6 and x[rs1] does not have type = 4 (sealed) or type = 5 (sealed-return).

◦ imm = 7 and x[rs1] does not have type = 5 (sealed-return).

If no exception is raised:

21

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L159

• If imm > 7, write zero to x[rd]

• Otherwise, write field to x[rd] according to the LCC multiplexing table.

Table 8. LCC multiplexing table

imm field

0 x[rs1].valid

1 x[rs1].type

2 x[rs1].cursor

3 x[rs1].base

4 x[rs1].end

5 x[rs1].perms

6 x[rs1].async

7 x[rs1].reg

3.1.5. Bounds Shrinking

The bounds (base and end fields) of a capability can be shrunk with the SHRINK instruction.

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (I)rs2 (I)0b0000001

Figure 11. SHRINK instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rd].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• Illegal operand value (29)

◦ x[rs1] >= x[rs2].

◦ x[rs1] < x[rd].base or x[rs2] > x[rd].end.

If no exception is raised:

1. Set x[rd].base to x[rs1] and x[rd].end to x[rs2].

22

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L37

2. If x[rd].cursor < x[rs1], set x[rd].cursor to x[rs1].

3. If x[rd].cursor > x[rs2], set x[rd].cursor to x[rs2].

3.1.6. Bounds Splitting

The SPLIT instruction can split a capability into two by splitting the bounds. It attempts to split the
capability x[rs1] into two capabilities, one with bounds [x[rs1].base, x[rs2]) and the other with
bounds [x[rs2], x[rs1].end).

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000110

Figure 12. SPLIT instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is neither 0 (linear) nor 1 (non-linear).

• Illegal operand value (29)

◦ x[rs2] <= x[rs1].base or x[rs2] >= x[rs1].end.

If no exception is raised:

1. If rs1 = rd, the instruction is a no-op.

2. Set val to x[rs2].

3. Write x[rs1] to x[rd].

4. Set x[rs1].end to val, x[rs1].cursor to x[rs1].base.

5. Set x[rd].base to val, x[rd].cursor to val.

3.1.7. Permission Tightening

The TIGHTEN instruction tightens the permissions (perms field) of a capability.

Sail definition

23

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L226
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L86

067111214151920242531

0b1011011rd (C)0b001rs1 (C)imm[4:0] (Z)0b0000010

Figure 13. TIGHTEN instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ x[rs1].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• Illegal operand value (29)

◦ imm <= 7, and imm <=p x[rs1].perms does not hold.

If no exception is raised:

1. MOVC rd, rs1.

2. If imm > 7, set x[rs1].perms to 0. Otherwise, set x[rs1].perms to imm.

3.2. Type Manipulation
Some instructions can affect the type field of a capability directly. In general, the type field cannot
be set arbitrarily. Instead, it is changed as the side effect of certain semantically significant
operations.

3.2.1. Delinearisation

The DELIN instruction delinearises a linear capability.

Sail definition

067111214151920242531

0b1011011rd (C)0b001**0b0000011

Figure 14. DELIN instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

• Unexpected capability type (26)

◦ x[rd].type is not 0 (linear).

24

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L128

If no exception is raised:

• Set x[rd].type to 1 (non-linear).

3.2.2. Initialisation

The INIT instruction transforms an uninitialised capability into a linear capability after its
associated memory region has been fully initialised (written with new data).

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001001

Figure 15. INIT instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rs1].type is not 3 (uninitialised).

• Illegal operand value (29)

◦ x[rs1].cursor and x[rs1].end are not equal.

If no exception is raised:

1. Set val to x[rs2].

2. MOVC rd, rs1.

3. Set x[rd].type to 0 (linear), and x[rd].cursor to x[rd].base + val.

3.2.3. Sealing

The SEAL instruction seals a linear capability.

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0000111

Figure 16. SEAL instruction format

An exception is raised when any of the following conditions is met:

25

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L128
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L283

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear).

• Insufficient capability permissions (27)

◦ 6 <=p x[rs1].perms does not hold.

• Illegal operand value (29)

◦ The size of the memory region associated with x[rs1] is smaller than CLENBYTES * 33
bytes (i.e., x[rs1].end - x[rs1].base < CLENBYTES * 33).

◦ x[rs1].base is not aligned to CLENBYTES bytes.

◦ The content of the memory region [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) does not contain a capability.

If no exception is raised:

1. MOVC rd, rs1.

2. Set x[rd].type to 2 (sealed), and x[rd].async to 0 (synchronous).

3.3. Dropping
The DROP instruction invalidates a capability.

Sail definition

067111214151920242531

0b1011011*0b001rs1 (C)*0b0001011

Figure 17. DROP instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

If no exception is raised:

1. If x[rs1].valid is 0 (invalid), the instruction is a no-op.

2. Otherwise, set x[rs1].valid to 0 (invalid).

26

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L440

3.4. Revocation

3.4.1. Revocation Capability Creation

The MREV instruction creates a revocation capability.

Sail definition

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001000

Figure 18. MREV instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear).

If no exception is raised:

1. Write x[rs1] to x[rd].

2. Set x[rd].type to 2 (revocation).

3.4.2. Revocation Operation

The REVOKE instruction revokes a capability.

Sail definition

067111214151920242531

0b1011011*0b001rs1 (C)*0b0000000

Figure 19. REVOKE instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

27

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L327
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L5

• Unexpected capability type (26)

◦ x[rs1].type is not 2 (revocation).

If no exception is raised:

1. For each capability c in the system (in either a register or memory location), c.valid is set
to 0 (invalid) if any of the following conditions are met:

◦ c.type is not 2 (revocation), c.valid is 1 (valid), and c aliases with x[rs1].

◦ c.type is 2 (revocation), c.valid is 1 (valid), and x[rs1] <t c.

2. x[rs1].type is set to 0 (linear) if at least one of the following conditions are met:

◦ For every invalidated capability c, the type of c is non-linear (i.e., c.type is 1).

◦ 2 <=p x[rs1].perms does not hold.

3. Otherwise, set x[rs1].type to 3 (uninitialised), and x[rs1].cursor to x[rs1].base.

28

4. Memory Access Instructions
Capstone-RISC-V provides instructions to load and store capabilities from/to memory regions.

4.1. Load Capabilities
Sail definition

The LDC instruction loads a capability from the memory.

4.1.1. Secure world or normal world capability encoding mode

The LDC instruction loads a capability from the memory using a capability, when cwrld is 1 (secure
world), or when cwrld is 0 (normal world) but emode is 1 (capability encoding mode).

06711121415192031

0b1011011rd (C)0b011rs1 (C)imm[11:0] (S)

Figure 20. LDC instruction format in secure world or normal world capability encoding mode

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 5 (sealed-return), or 6 (exit).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

• Capability out of bound (28)

◦ x[rs1].type is 0 (linear) or 1 (non-linear), and x[rs1].cursor + imm is not in the range
[x[rs1].base, x[rs1].end - CLENBYTES].

◦ x[rs1].type is 5 (sealed-return) or 6 (exit), and x[rs1].cursor + imm is not in the range
[x[rs1].base + 3 * CLENBYTES, x[rs1].base + 33 * CLENBYTES - CLENBYTES].

• Load address misaligned (4)

◦ x[rs1].cursor + imm is not aligned to CLENBYTES bytes.

• Load access fault (5)

◦ The data contained in the memory location [x[rs1].cursor + imm, x[rs1].cursor +
imm + CLENBYTES) is not a capability.

• Insufficient capability permissions (27)

29

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_mem.sail#L5

◦ The capability being loaded is not a non-linear capability (i.e., type != 1), x[rs1].type
is 0 (linear) or 1 (non-linear), and 2 <=p x[rs1].perms does not hold.

If no exception is raised:

1. Set cap to x[rs1].

2. Load the capability at the memory location cap.cursor + imm, cap.cursor + imm +
CLENBYTES) into x[rd].

3. If x[rd].type is not 1 (non-linear), write cnull to the memory location [cap.cursor + imm,
cap.cursor + imm + CLENBYTES).

4.1.2. Normal world integer encoding mode

When cwrld is 0 (normal world) and emode is 0 (integer encoding mode), the LDC instruction loads a
capability from the normal memory using raw addresses. The raw addresses are interpreted as
physical addresses or virtual addresses depending on the whether virtual memory is enabled.

06711121415192031

0b1011011rd (C)0b011rs1 (I)imm[11:0] (S)

Figure 21. LDC instruction format in normal world integer encoding mode

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not an integer.

• Load address misaligned (4)

◦ x[rs1] + imm is not aligned to CLENBYTES bytes.

• Load access fault (5)

◦ x[rs1] + imm is in the range [SBASE, SEND).

◦ The data contained in the memory location [x[rs1] + imm, x[rs1] + imm + CLENBYTES)
is not a capability.

If no exception is raised:

1. Set int to x[rs1].

2. Load the capability at the memory location [int + imm, int + imm + CLENBYTES) into x[rd].

3. If x[rd].type is not 1 (non-linear), write cnull to the memory location [int + imm, int +
imm + CLENBYTES).

30

4.2. Store Capabilities
Sail definition

The STC instruction stores a capability to the memory.

4.2.1. Secure world or normal world capability encoding mode

The STC instruction stores a capability to the memory using a capability, when cwrld is 1 (secure
world), or when cwrld is 0 (normal world) but emode is 1 (capability encoding mode).

067111214151920242531

0b1011011imm[4:0] (S)0b100rs1 (C)rs2 (C)imm[11:5] (S)

Figure 22. STC instruction format in secure world or normal world capability encoding mode

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 3 (uninitialised), 5 (sealed-return), or 6
(exit).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 or 1, and 2 <=p x[rs1].perms does not hold.

• Illegal operand value (29)

◦ x[rs1].type is 3 (uninitialised) and imm is not 0.

• Capability out of bound (28)

◦ x[rs1].type is 0, 1, or 3, and x[rs1].cursor + imm is not in the range [x[rs1].base,
x[rs1].end - CLENBYTES].

◦ x[rs1].type is 5 or 6, and x[rs1].cursor + imm is not in the range [x[rs1].base + 3 *
CLENBYTES, x[rs1].base + 33 * CLENBYTES - CLENBYTES].

• Store/AMO address misaligned (6)

◦ x[rs1].cursor + imm is not aligned to CLENBYTES bytes.

If no exception is raised:

31

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_mem.sail#L93

1. Store x[rs2] to the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
CLENBYTES).

2. If x[rs1].type is 3 (uninitialised), set x[rs1].cursor to x[rs1].cursor + CLENBYTES.

3. If x[rs2].type is not 1 (non-linear), write cnull to x[rs2].

4.2.2. Normal world integer encoding mode

When cwrld is 0 (normal world) and emode is 0 (integer encoding mode), the STC instruction stores a
capability to the normal memory using raw addresses. The raw addresses are interpreted as
physical addresses or virtual addresses depending on the whether virtual memory is enabled.

067111214151920242531

0b1011011imm[4:0] (S)0b100rs1 (I)rs2 (C)imm[11:5] (S)

Figure 23. STC instruction format in normal world integer encoding mode

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not an integer.

◦ x[rs2] is not a capability.

• Store/AMO address misaligned (6)

◦ x[rs1] + imm is not aligned to CLENBYTES bytes.

• Store/AMO access fault (7)

◦ x[rs1] + imm is in the range [SBASE, SEND).

If no exception is raised:

1. Store x[rs2] to the memory location [x[rs1] + imm, x[rs1] + imm + CLENBYTES).

2. If x[rs2].type is not 1 (non-linear), write cnull to x[rs2].

32

5. Control Flow Instructions

5.1. Jump to Capabilities
The CJALR and CBNZ instructions allow jumping to a capability, i.e., setting the program counter to
a given capability, in a unconditional or conditional manner.

5.1.1. CJALR

Sail definition

06711121415192031

0b1011011rd (C)0b101rs1 (C)imm[11:0] (S)

Figure 24. CJALR instruction format

An exception is raised when any of the following conditions is met:

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

If no exception is raised:

1. Set cap to x[rs1].

2. Set pc.cursor to pc.cursor + 4, write pc to x[rd].

3. Set cap.cursor to cap.cursor + imm, write cap to pc.

4. If rs1 != rd and x[rs1].type != 1, write cnull to x[rs1].

5.1.2. CBNZ

Sail definition

06711121415192031

0b1011011rd (C)0b110rs1 (I)imm[11:0] (S)

Figure 25. CBNZ instruction format

An exception is raised when any of the following conditions is met:

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

33

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L200
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L238

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

If no exception is raised:

• If x[rs1] is 0, the instruction is a no-op.

• Otherwise

1. Write x[rd] to pc.

2. Set pc.cursor to pc.cursor + imm.

3. If x[rd].type != 1, write cnull to x[rd].

5.2. Domain Crossing
Domains in Capstone-RISC-V are individual software compartments that are protected by a safe
context switching mechanism, i.e., domain crossing. The mechanism is provided by the CALL and
RETURN instructions.

5.2.1. CALL

Sail definition

The CALL instruction is used to call a sealed capability, i.e., to switch to another domain.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0100000

Figure 26. CALL instruction format

An exception is raised when any of the following conditions is met:

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 4 (sealed).

◦ x[rs1].async is not 0 (synchronous).

34

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L7

If no exception is raised:

1. MOVC cra, rs1.

2. Swap the program counter (pc) with the content at the memory location [cra.base,
cra.base + CLENBYTES).

3. Swap ceh with the content at the memory location [cra.base + CLENBYTES, cra.base + 2 *
CLENBYTES).

4. Swap csp with the content at the memory location [cra.base + 2 * CLENBYTES, cra.base + 3
* CLENBYTES).

5. Set cra.type to 5 (sealed-return), cra.cursor to cra.base, cra.reg to rd, and cra.async to 0
(synchronous).

5.2.2. RETURN

Sail definition

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100001

Figure 27. RETURN instruction format

An exception is raised when any of the following conditions is met:

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

• Unexpected operand type (24)

◦ rs1 != 0 and x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ rs1 != 0 and x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ rs1 != 0 and x[rs1].type is not 5 (sealed-return).

◦ rs1 != 0 and x[rs1].async is neither 0 (synchronous) nor 1 (upon exception).

If no exception is raised:

If rs1 = 0:

1. Set pc.cursor to x[rs2].

2. Write pc to ceh, and epc to pc.

35

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L67

3. If epc.type != 1, write cnull to epc.

Otherwise:

When x[rs1].async = 0 (synchronous):

1. Write x[rs1] to cap and cnull to x[rs1].

2. Set pc.cursor to x[rs2], and swap the program counter (pc) with the content at the memory
location [cap.base, cap.base + CLENBYTES).

3. Swap ceh with the content at the memory location [cap.base + CLENBYTES, cap.base + 2 *
CLENBYTES).

4. Swap csp with the content at the memory location [cap.base + 2 * CLENBYTES, cap.base + 3
* CLENBYTES).

5. Write cap to x[cap.reg] and set x[cap.reg].type to 4 (sealed).

When x[rs1].async = 1 (upon exception):

1. Set pc.cursor to x[rs2], and swap the program counter (pc) with the content at the memory
location [x[rs1].base, x[rs1].base + CLENBYTES).

2. Store ceh to the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 * CLENBYTES).

3. Set x[rs1].type to 4 (sealed), x[rs1].async to 0 (synchronous).

4. Write the resulting x[rs1] to ceh, and cnull to x[rs1].

5. For i = 1, 2, …, 31, swap x[i] with the content at the memory location [ceh.base + (i +
1) * CLENBYTES, ceh.base + (i + 2) * CLENBYTES).

5.3. World Switching
The world switching mechanism of Capstone-RISC-V is provided by the CAPENTER and CAPEXIT
instructions.

36

Figure 28. Overview of world switching in Capstone-RISC-V

5.3.1. CAPENTER

Sail definition

The CAPENTER instruction causes an entry into the secure world from the normal world. And it is
only available in the normal world.

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0100010

Figure 29. CAPENTER instruction format

An exception is raised when any of the following conditions is met:

• Illegal instruction (0)

◦ cwrld is 1 (secure world).

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 4 (sealed).

If no exception is raised:

When x[rs1].async = 0 (synchronous):

1. MOVC cra, rs1.

37

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L270

2. Write pc and sp to normal_pc and normal_sp respectively.

3. Load the program counter (pc) from the memory location [cra.base, cra.base +
CLENBYTES).

4. Load ceh from the memory location [cra.base + CLENBYTES, cra.base + 2 * CLENBYTES).

5. Load csp from the memory location [cra.base + 2 * CLENBYTES, cra.base + 3 * CLENBYTES).

6. Set cra.type to 6 (exit), cra.cursor to cra.base.

7. Write rs1 to switch_reg, rd to exit_reg.

8. Set cwrld to 1 (secure world).

When x[rs1].async is 1 (upon exception) or 2 (upon interrupt):

1. Write x[rs1] to switch_cap, and cnull to x[rs1].

2. Write pc and sp to normal_pc and normal_sp respectively.

3. Load the program counter (pc) from the memory location [switch_cap.base,
switch_cap.base + CLENBYTES).

4. Load ceh from the memory location [switch_cap.base + CLENBYTES, switch_cap.base + 2 *
CLENBYTES).

5. For i = 1, 2, …, 31, load x[i] from the memory location [switch_cap.base + (i + 1) *
CLENBYTES, switch_cap.base + (i + 2) * CLENBYTES).

6. Set switch_cap.type to 3 (uninitialised), switch_cap.cursor to switch_cap.base.

7. Write rs1 to switch_reg, rd to exit_reg.

8. Set cwrld to 1 (secure world).

▼ Note: the purpose of the rd operand

The rd register will be set to a value indicating the cause of exit when the CPU core exits
from the secure world synchronously or asynchronously.

5.3.2. CAPEXIT

Sail definition

The CAPEXIT instruction causes an exit from the secure world into the normal world. It is only
available in the secure world and can only be used with an exit capability.

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100011

Figure 30. CAPEXIT instruction format

An exception is raised when any of the following conditions is met:

38

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L382

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 6 (exit).

If no exception is raised:

1. Write x[rs1] to cap, and cnull to x[rs1].

2. Set pc.cursor to x[rs2], and write pc, ceh, and csp to the memory location [cap.base,
cap.base + CLENBYTES), [cap.base + CLENBYTES, cap.base + 2 * CLENBYTES), and [cap.base +
2 * CLENBYTES, cap.base + 3 * CLENBYTES) respectively.

3. Write normal_pc + 4 and normal_sp to pc and sp respectively.

4. Set cap.type to 4 (sealed), cap.async to 0 (synchronous), and write the resulting cap to
x[switch_reg].

5. Set x[exit_reg] to 0 (normal exit).

6. Set cwrld to 0 (normal world).

39

6. Control and Status Instructions
The CCSRRW instruction is used to read and write specified capability control and status registers
(CCSRs).

Sail definition

06711121415192031

0b1011011rd (C)0b111rs1 (C)imm[11:0] (Z)

Figure 31. CCSRRW instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Illegal operand value (29)

◦ imm does not correspond to the encoding of a valid CCSR.

If no exception is raised:

1. If the read constraint is satisfied

◦ The content of the CCSR specified by imm is written to x[rd].

◦ If x[rd].type is not 1 (non-linear), write cnull to the CCSR specified by imm.

2. Otherwise, write cnull to x[rd].

3. If the write constraint is satisfied

◦ Write x[rs1] to the CCSR specified by imm.

◦ If x[rs1].type is not 1 (non-linear), write cnull to x[rs1].

4. Otherwise, preserve the current content of the CCSR specified by imm.

40

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrstatus.sail#L5

7. Adjustments to Existing Instructions
For most of the existing instructions in RV64IZicsr, their behaviour is unmodified. The cursor field
(if type != 4) or base field (if type = 4) of the capability is used if a register containing a capability is
used as an operand.

The following instructions in RV64IZicsr are adjusted in Capstone-RISC-V:

• For memory access instructions, they are extended to use capabilities as addresses for
memory access.

• For control flow instructions, they are slightly adjusted for the case where the program
counter is a capability.

• Some instructions in RV64IZicsr become illegal instructions in the secure world.

7.1. Memory Access Instructions
In RV64IZicsr, memory access instructions include load instructions (i.e., lb, lh, ld, lw, lbu, lhu, lwu),
and store instructions (i.e., sb, sh, sw, sd). These instructions take an integer as a raw address, and
load or store a value from/to this address. In Capstone-RISC-V, these instructions are extended to
take a capability as an address.

7.1.1. Load Instructions

▼ Note: size of load instructions

The size used in this sections is the size (in bytes) of the integer being loaded.

Mnemonic size

lb 1

lbu 1

lh 2

lhu 2

lw 4

lwu 4

ld 8

Normal world integer encoding mode

When cwrld is 0 (normal world) and emode is 0 (integer encoding mode), RV64IZicsr load instructions
behave the same as in RV64IZicsr, except that the following adjustments are made to these
instructions:

• A Load access fault (5) exception is raised if the address to be accessed (i.e., x[rs1] +

41

imm) is within the range (SBASE - size, SEND).

Secure world or normal world capability encoding mode

RV64IZicsr load instructions are modified to load integers of different sizes using capabilities, when
cwrld is 1 (secure world), or when cwrld is 0 (normal world) and emode is 1 (capability encoding
mode).

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 5 (sealed-return), or 6 (exit).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

• Capability out of bound (28)

◦ x[rs1].type is 0 (linear) or 1 (non-linear), and x[rs1].cursor + imm is not in the range
[x[rs1].base, x[rs1].end - size].

◦ x[rs1].type is 5 (sealed-return) or 6 (exit), and x[rs1].cursor + imm is not in the range
[x[rs1].base + 3 * CLENBYTES, x[rs1].base + 33 * CLENBYTES - size].

• Load address misaligned (4)

◦ x[rs1].cursor + imm is not aligned to size bytes.

06711121415192031

0000011rd (I)0b000rs1 (C)imm[11:0] (S)

Figure 32. lb instruction format in secure world or normal world capability encoding mode

06711121415192031

0000011rd (I)0b001rs1 (C)imm[11:0] (S)

Figure 33. lh instruction format in secure world or normal world capability encoding mode

06711121415192031

0000011rd (I)0b010rs1 (C)imm[11:0] (S)

Figure 34. lw instruction format in secure world or normal world capability encoding mode

42

06711121415192031

0000011rd (I)0b011rs1 (C)imm[11:0] (S)

Figure 35. ld instruction format in secure world or normal world capability encoding mode

If no exception is raised:

• Load the content at the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
size) as a signed integer to x[rd].

06711121415192031

0000011rd (I)0b100rs1 (C)imm[11:0] (S)

Figure 36. lbu instruction format in secure world or normal world capability encoding mode

06711121415192031

0000011rd (I)0b101rs1 (C)imm[11:0] (S)

Figure 37. lhu instruction format in secure world or normal world capability encoding mode

06711121415192031

0000011rd (I)0b110rs1 (C)imm[11:0] (S)

Figure 38. lwu instruction format in secure world or normal world capability encoding mode

If no exception is raised:

• Load the content at the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
size) as an unsigned integer to x[rd].

7.1.2. Store Instructions

▼ Note: size of store instructions

The size used in this sections is the size (in bytes) of the integer being stored.

Mnemonic size

sb 1

sh 2

sw 4

sd 8

Normal world integer encoding mode

When cwrld is 0 (normal world) and emode is 0 (integer encoding mode), RV64IZicsr store
instructions behave the same as in RV64IZicsr, except that the following adjustments are made to
these instructions:

43

• A Store/AMO access fault(7) exception is raised if the address to be accessed (i.e., x[rs1] +
imm) is within the range (SBASE - size, SEND).

Secure world or normal world capability encoding mode

RV64IZicsr store instructions are modified to store integers of different sizes using capabilities,
when cwrld is 1 (secure world), or when cwrld is 0 (normal world) and emode is 1 (capability
encoding mode).

067111214151920242531

0100011imm[4:0] (S)0b000rs1 (C)rs2 (I)imm[11:5] (S)

Figure 39. sb instruction format in secure world or normal world capability encoding mode

067111214151920242531

0100011imm[4:0] (S)0b001rs1 (C)rs2 (I)imm[11:5] (S)

Figure 40. sh instruction format in secure world or normal world capability encoding mode

067111214151920242531

0100011imm[4:0] (S)0b010rs1 (C)rs2 (I)imm[11:5] (S)

Figure 41. sw instruction format in secure world or normal world capability encoding mode

067111214151920242531

0100011imm[4:0]0b011rs1 (C)rs2 (I)imm[11:5]

Figure 42. sd instruction format in secure world or normal world capability encoding mode

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 3 (uninitialised), 5 (sealed-return), or 6
(exit).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 or 1, and 2 <=p x[rs1].perms does not hold.

• Illegal operand value (29)

◦ x[rs1].type is 3 (uninitialised) and imm is not 0.

• Capability out of bound (28)

44

◦ x[rs1].type is 0, 1, or 3, and x[rs1].cursor + imm is not in the range [x[rs1].base,
x[rs1].end - size].

◦ x[rs1].type is 5 or 6, and x[rs1].cursor + imm is not in the range [x[rs1].base + 3 *
CLENBYTES, x[rs1].base + 33 * CLENBYTES - size].

• Store/AMO address misaligned (6)

◦ x[rs1].cursor + imm is not aligned to size bytes.

If no exception is raised:

1. Store x[rs2] to the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm + size) as
an integer.

2. If x[rs1].type is 3 (uninitialised), set x[rs1].cursor to x[rs1].cursor + size.

7.2. Control Flow Instructions
In RV64IZicsr, conditional branch instructions (i.e., beq, bne, blt, bge, bltu, and bgeu), and
unconditional jump instructions (i.e., jal and jalr) are used to control the flow of execution. In
Capstone-RISC-V, these instructions are adjusted to support the situation where the program
counter is a capability.

7.2.1. Branch Instructions

067111214151920242531

0b1100011imm[4:1|11] (S)0b000rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 43. beq instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b001rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 44. bne instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b100rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 45. blt instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b101rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 46. bge instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b110rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 47. bltu instruction format

45

067111214151920242531

0b1100011imm[4:1|11] (S)0b111rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 48. bgeu instruction format

The following adjustments are made to these instructions:

• When cwrld is 1 (secure world), pc.cursor, instead of pc, is changed by the instruction.

7.2.2. Jump Instructions

067111231

0b1101111rd (I)imm[20|10:1|11|19:12] (S)

Figure 49. jal instruction format

06711121415192031

0b1100111rd (I)0b000rs1 (I)imm[11:0] (S)

Figure 50. jalr instruction format

The following adjustments are made to these instructions:

• When cwrld is 1 (secure world), pc.cursor + 4, instead of pc + 4, is written to x[rd].

• When cwrld is 1 (secure world), pc.cursor, instead of pc, is changed by the instruction.

7.3. Illegal Instructions
Some instructions in RV64IZicsr now raise illegal instruction (2) exceptions when executed in
the secure world, under all or some circumstances.

These instructions are:

• All instructions defined in the privileged ISA of RV64IZicsr.

• All instructions defined in the Zicsr extension, namely instructions that directly access
CSRs, when the CSR specified is not one defined in Capstone-RISC-V, or when the
read/write constraints are not satisfied.

• ecall.

• ebreak.

46

https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

8. Interrupts and Exceptions

8.1. Exception and Exit Codes
▼ Note: where are the exception codes relevant?

For Capstone-RISC-V, there are three places where exception codes are relevant:

1. Handleable Exception: The argument to pass to the exception handler domain.

2. Unhandleable Exception: The value returned to the CAPENTER instruction in the user
process.

3. Interrupt: The exception code that the OS sees.

The argument passed to the exception handler domain will be in the register cra and a0, and
the exit code the user process receives will be in the register specified by exit_reg.

The exception code is what the exception handler domain receives as an argument when an
exception occurs in the secure world. It is an integer value that indicates what the type of the
exception is.

Capstone-RISC-V also has exit codes, which are the values returned to the CAPENTER instruction in
case the exception cannot be handled in the secure world.

We define the exception code and the exit code for each type of exception below. It aligns with the
exception codes defined in RV64IZicsr, where applicable, for ease of implementation and
interoperability.

Table 9. Exception codes and exit codes

Exception Exception code Exit code

Instruction address misaligned 0 1

Instruction access fault 1 1

Illegal instruction 2 1

Breakpoint 3 1

Load address misaligned 4 1

Load access fault 5 1

Store/AMO address misaligned 6 1

Store/AMO access fault 7 1

Unexpected operand type 24 1

Invalid capability 25 1

Unexpected capability type 26 1

Insufficient capability permissions 27 1

47

Exception Exception code Exit code

Capability out of bound 28 1

Illegal operand value 29 1

Insufficient system resources 30 1

For interrupts, the same encodings as in RV64IZicsr are used.

▼ Note: exit code

Currently, we use the same exit code 1 for all exception types to protect the confidentiality
of the secure world execution.

▼ Note: implementation specified exception

For some of the exception code, where the corresponding exception is raised is not
specified as part of the ISA specification. Instead, it is up to the implementation to decide
where to raise the exception. These exceptions include:

• Insufficient system resources (30)

8.2. Exception Data
For the secure world, the exception-related data is stored in the tval CSR, similar to RV64IZicsr. The
exception handler can use the value to decide how to handle the exception. However, such data is
available only for in-domain exception handling, where the exception handling process does not
involve a domain switch.

▼ Note: tval is only available in in-domain exception handling

For exception handling that crosses domain (i.e., when ceh is a valid sealed capability) or
world boundaries (i.e., when the normal world ends up handling the exception), the
exception data (i.e., the data in tval) is not available. This is to protect the confidentiality of
domain execution. Note that this design does not stop the excepted domain from selectively
trusting a different domain with such data.

For exceptions defined in RV64IZicsr, the same data as in it is written to tval. For the added
exceptions, the following data is written to tval:

Table 10. Exception data for the added exceptions in the secure world

Exception Data

Unexpected operand type (24) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Invalid capability (25) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

48

Exception Data

Unexpected capability type (26) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Insufficient capability permissions
(27)

The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Capability out of bound (28) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Illegal operand value (29) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

8.3. Handling of Secure-World Interrupts
▼ Note: overview of interrupt handling in the secure world

For interrupts, in order to prevent denial-of-service attacks by the secure world (e.g. a
timer interrupt), the processor core needs to always transfer the control back to the normal
world safely.

The interrupt will be translated to one in the normal world that occurs at the CAPENTER
instruction used to enter the secure world.

Since interrupts are typically relevant only to the management of system resources, the
interrupt should be transparent to both the secure world and the user process in the
normal world. In other words, the secure world will simply resume execution from where
it was interrupted after the interrupt is handled by the normal-world OS.

When an interrupt occurs in the secure world, the processor core directly saves the full context,
scrubs it, and exits to the normal world. It then generates a corresponding interrupt in the normal
world, and follows the normal-world interrupt handling process thereafter.

The figure below shows the overview of interrupt handling in Capstone-RISC-V.

49

Figure 51. Overview of interrupt handling in Capstone-RISC-V

If the content in switch_cap satisfies the following conditions:

• switch_cap.valid is 1 (valid).

• switch_cap.type is 0 (linear) or 3 (uninitialised).

• switch_cap.base is aligned to CLENBYTES.

• 6 <=p switch_cap.perms holds.

• switch_cap.end - switch_cap.base >= CLENBYTES * 33 holds.

1. Store pc to the memory location [switch_cap.base, switch_cap.base + CLENBYTES).

2. Store ceh to the memory location [switch_cap.base + CLENBYTES, switch_cap.base + 2 *
CLENBYTES), and write cnull to ceh.

3. For i = 1, 2, …, 31, store the content of x[i] to the memory location [switch_cap.base +
(i + 1) * CLENBYTES, switch_cap.base + (i + 2) * CLENBYTES).

4. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp
respectively.

5. Set switch_cap.type to 4 (sealed), switch_cap.async to 2 (upon interrupt).

6. Write switch_cap to the register x[switch_reg], and cnull to switch_cap.

7. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

8. Set the cwrld register to 0 (normal world).

9. Trigger an interrupt in the normal world.

Otherwise:

50

1. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp
respectively.

2. Write cnull to x[switch_reg].

3. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

4. Set the cwrld register to 0 (normal world).

5. Trigger an interrupt in the normal world.

Note that in this case, there will be another exception in the normal world when the user process
resumes execution after the interrupt has been handled by the OS, due to the invalid switch_cap
value written to the CAPENTER operand.

8.4. Handling of Secure-World Exceptions
▼ Note: overview of exception handling in the secure world

For exceptions, we want to give the secure world the chance to handle them first. If the
secure world manages to handle the exception, the normal world will not be involved. The
end result is that the whole exception or its handling is not even visible to the normal
world.

If the secure world fails to handle an exception, such as when ceh is not a valid sealed
capability), however, the normal world will take over.

The exception will not be translated into an exception in the normal world, but instead
indicated in the exit code that the CAPENTER instruction in the user process receives. The
user process can then decide what to do based on the exit code (e.g., terminate the domain
in the secure world).

When an exception occurs, the processor core first attempts to handle the exception in the secure
world. If this fails, the processor core saves the full context if it can and exits to the normal world
with a proper error code.

The figure below shows the overview of exception handling in Capstone-RISC-V.

51

Figure 52. Overview of exception handling in Capstone-RISC-V

If the content in ceh satisfies the following conditions:

• ceh.type is 4 (sealed).

• ceh.valid is 1 (valid).

• ceh.async is 0 (synchronous)

1. Swap pc with the content at memory location [ceh.base, ceh.base + CLENBYTES).

2. For i = 1, 2, …, 31, swap x[i] with the content at the memory location [ceh.base + (i +
1) * CLENBYTES, ceh.base + (i + 2) * CLENBYTES).

3. Set the ceh.type to 5 (sealed-return), ceh.cursor to ceh.base, and ceh.async to 1 (upon
exception).

4. Write ceh to the register cra, and cnull to the register ceh.

5. Swap ceh with the content at the memory location [cra.base + CLENBYTES, cra.base + 2 *
CLENBYTES).

6. Write the exception code to the register a0.

If the content is ceh is a valid executable non-linear capability or linear capability:

1. Write pc to epc.

2. Write ceh to pc. If ceh.type != 1, write cnull to ceh.

3. Write the exception code to cause.

4. Write extra exception data to tval.

Otherwise:

If the content in switch_cap satisfies the following conditions:

52

• switch_cap.valid is 1 (valid).

• switch_cap.type is 0 (linear) or 3 (uninitialised).

• switch_cap.base is aligned to CLENBYTES.

• 6 <=p switch_cap.perms holds.

• switch_cap.end - switch_cap.base >= CLENBYTES * 33 holds.

1. Store the current value of the program counter (pc) to the memory location
[switch_cap.base, switch_cap.base + CLENBYTES).

2. Store ceh to the memory location [switch_cap.base + CLENBYTES, switch_cap.base + 2 *
CLENBYTES), and write cnull to ceh.

3. For i = 1, 2, …, 31, store the content of x[i] to the memory location [switch_cap.base +
(i + 1) * CLENBYTES, switch_cap.base + (i + 2) * CLENBYTES).

4. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp
respectively.

5. Write normal_pc + 4 and normal_sp to pc and sp respectively.

6. Set switch_cap.type to 4 (sealed), switch_cap.async to 1 (upon exception).

7. Write the content of switch_cap to x[switch_reg], and cnull to switch_cap.

8. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

9. Write the exit code to x[exit_reg].

10. Set the cwrld register to 0 (normal world).

Otherwise:

1. Write normal_pc + 4 and normal_sp to pc and sp respectively.

2. Write cnull to x[switch_reg].

3. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

4. Write the exit code to x[exit_reg].

5. Set the cwrld register to 0 (normal world).

▼ Note: comparison between synchronous and asynchronous exit

Compare this with CAPEXIT. We require that CAPEXIT be provided with a valid sealed-
return capability rather than use the latent capability in switch_cap. This allows us to
enforce containment of domains in the secure world, so that a domain is prevented from
escaping from the secure world when such a behaviour is undesired.

53

Appendix A: Instruction Listing

A.1. Capstone Instructions
067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 53. Instruction format: R-type

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 54. Instruction format: I-type

067111214151920242531

0b1011011imm[4:0]func3rs1rs2imm[11:5]

Figure 55. Instruction format: S-type

067111214151920242531

0b1011011rdfunc3rs1imm[4:0]func7

Figure 56. Instruction format: RI-type

Table 11. Capability manipulation instructions

Mnemonic Sail model Format Func3 Func7 rs1 rs2 rd imm [4:0] imm[11:0] World

REVOKE link R 001 0000000 C - - - - *

SHRINK link R 001 0000001 I I C - - *

TIGHTEN link RI 001 0000010 C - C Z - *

DELIN link R 001 0000011 - - C - - *

LCC link RI 001 0000100 C - I Z - *

SCC link R 001 0000101 C I C - - *

SPLIT link R 001 0000110 C I C - - *

SEAL link R 001 0000111 C - C - - *

MREV link R 001 0001000 C - C - - *

INIT link R 001 0001001 C I C - - *

MOVC link R 001 0001010 C - C - - *

DROP link R 001 0001011 C - - - - *

CINCOFFSET link R 001 0001100 C I C - - *

CINCOFFSETIMM link I 010 - C - C - S *

Table 12. Memory access instructions

54

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L5
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L37
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L86
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L128
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L159
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L193
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L226
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L283
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L327
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L374
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L412
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L440
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L465
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_cap.sail#L499

Mnemonic Sail model Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World

LDC link I 0 011 - I - C S N

I 1 011 - C - C S N

I - 011 - C - C S S

STC link S 0 100 - I C - S N

S 1 100 - C C - S N

S - 100 - C C - S S

Table 13. Control flow instructions

Mnemonic Sail model Format Func3 Func7 rs1 rs2 rd imm[11:0] World

CALL link R 001 0100000 C - C - S

RETURN link R 001 0100001 C I - - S

CJALR link I 101 - C - C S S

CBNZ link I 110 - I - C S S

CAPENTER link R 001 0100010 C - I - N

CAPEXIT link R 001 0100011 C I - - S

Table 14. Control and status instructions

Mnemonic Sail model Format Func3 Func7 rs1 rs2 rd imm[11:0] World

CCSRRW link I 111 - C - C Z *

A.2. Extended RV64IZicsr Memory Access Instructions
06711121415192031

0b0000011rdfunc3rs1imm[11:0]

Figure 57. Instruction format: I-type

067111214151920242531

0b0100011imm[4:0]func3rs1rs2imm[11:5]

Figure 58. Instruction format: S-type

Table 15. Extended RV64IZicsr load instructions

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World

lb I 0 000 - I - I S N

I 1 000 - C - I S N

I - 000 - C - I S S

lh I 0 001 - I - I S N

I 1 001 - C - I S N

55

https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_mem.sail#L5
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_mem.sail#L93
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L7
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L67
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L200
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L238
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L270
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrflow.sail#L382
https://github.com/project-starch/capstone-sail/blob/9893cfa773be21dc0b733b675cfe4a61cb0c4a6c/model/riscv_insts_capstone_ctrstatus.sail#L5

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World

I - 001 - C - I S S

lw I 0 010 - I - I S N

I 1 010 - C - I S N

I - 010 - C - I S S

ld I 0 011 - I - I S N

I 1 011 - C - I S N

I - 011 - C - I S S

lbu I 0 100 - I - I S N

I 1 100 - C - I S N

I - 100 - C - I S S

lhu I 0 101 - I - I S N

I 1 101 - C - I S N

I - 101 - C - I S S

lwu I 0 110 - I - I S N

I 1 110 - C - I S N

I - 110 - C - I S S

Table 16. Extended RV64IZicsr store instructions

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World

sb S 0 000 - I I - S N

S 1 000 - C I - S N

S - 000 - C I - S S

sh S 0 001 - I I - S N

S 1 001 - C I - S N

S - 001 - C I - S S

sw S 0 010 - I I - S N

S 1 010 - C I - S N

S - 010 - C I - S S

sd S 0 011 - I I - S N

S 1 011 - C I - S N

S - 011 - C I - S S

▼ Note: the meaning of abbreviations in the table

For instruction operands:

56

I

Integer register

C

Capability register

-

Not used

For immediates:

S

Sign-extended

Z

Zero-extended

-

Not used

For worlds:

N

Normal world

S

Secure world

*

Either world

57

Appendix B: Comparison with Other
Capability-Based ISA Extensions to RISC-V
Similar to Capstone-RISC-V, CHERI-RISC-V [1] and CHERIoT [2] are also capability-based ISA
extension to RISC-V, both derived from the CHERI architecture. CHERI-RISC-V is designed for
general-purpose computing, whereas CHERIoT builds on RV32E and specialises in low-cost
embedded systems such as IoT devices.

We discuss the commonalities and differences between Capstone-RISC-V, CHERI-RISC-V, and
CHERIoT in this appendix, in the hope to shed light on how to allow Capstone-RISC-V to coexist with
the other two ISA extensions in the RISC-V ecosystem.

B.1. Commonalities
Capstone-RISC-V, CHERI-RISC-V, and CHERIoT all use architectural capabilities to allow capabilities
to be stored in either registers or memory, with hardware-enforced provenance and monotonicity
guarantees as well as bounds checks on capability dereferences. As a result, some of the
instructions in the three ISAs have obvious and direct correspondence, as summarised in the
following table.

Table 17. Correspondence between Capstone-RISC-V, CHERI-RISC-V, and CHERIoT instructions

Capstone-RISC-V
instruction(s)

CHERI-RISC-V instruction(s) CHERIoT instruction(s)

DROP CClearTag CClearTag

CJALR CJALR CJALR

CALL CInvoke -

SEAL CSealEntry -

CIncOffset CIncOffset CIncAddr

CIncOffsetImm CIncOffsetImm CIncAddrImm

LCC CGetAddr, CGetBase, CGetType,
CGetPerm

CGetAddr, CGetBase, CGetTop,
CGetType, CGetPerm

SCC CSetAddr CSetAddr

TIGHTEN CAndPerm CAndPerm

SHRINK CSetBounds, CSetBoundsExact CSetBounds, CSetBoundsExact

MOVC CMove CMove

LDC LC.CAP, LC.DDC, CLC CLC

STC SC.CAP, LC.DDC, CSC CSC

L[BHWD] L[BHWD][U].CAP L[BHWD][U]

S[BHWD] S[BHWD][U].CAP S[BHWD][U]

CCSRRW CSpecialRW CSpecialRW

58

Most of the shared instructions are the ones for capability manipulations, as a result of having
similar capability fields across the three ISA extensions. The basic use of capabilities, namely,
explicit capability-based memory accesses, is also common in all three ISA extensions.

B.2. Differences
The differences stem from the different sets of extra features and capability types supported by the
ISA extensions. For example, Capstone-RISC-V supports linear capabilities and revocation through
revocation capabilities that are found in neither CHERI-RISC-V nor CHERIoT. Moreover, CHERIoT
does not support hybrid-mode memory accesses that use raw addresses in place of explicit
capabilities, or domain switches that involve atomic swapping of sealed execution contexts, and
hence lacks the relevant instructions.

While Capstone-RISC-V and CHERI-RISC-V both have hybrid mode support, they adopt different
models, with Capstone-RISC-V using a two-world model that aligns with its high-level goal of
isolating pure capability code from privileged legacy code. Sealed capabilities in Capstone-RISC-V
are also different from those in CHERI-RISC-V and CHERIoT. Capstone-RISC-V uses sealed
capabilities exclusively for protecting domain execution contexts, allowing unsealing only upon
domain switching, whereas the other two ISA extensions find more generic use for them and allow
software to unseal them explicitly through an instruction.

The feature sets of the three ISA extensions are summarised in the table below.

Table 18. Feature sets of Capstone-RISC-V, CHERI-RISC-V, and CHERIoT

Feature Capstone-RISC-V CHERI-RISC-V CHERIoT

Linear
capabilities

Y - -

Revocation Revocation capabilities
with tracked derivation

Local capabilities Local capabilities,
revocation bits bound to
object memory locations,
local capabilities

Capability
load

Anyone can load
capabilities

Permit_Load_Capability
required

Permit_Load_Capability
required

Capability
store

Anyone can store
capabilities

Permit_Store_Capability or
Permit_Store_Local_Capabil
ity required

Permit_Store_Capability or
Permit_Store_Local_Capabil
ity required

Memory
zeroing

Uninitialised capabilities - -

Software-
defined
fields

- Y Y

Hybrid
mode

Separate normal and
secure worlds, with MMU
for integer address
accesses in normal world

Default data capability for
integer address accesses

-

59

Feature Capstone-RISC-V CHERI-RISC-V CHERIoT

Explicit
sealing

Anyone can seal Permit_Seal required Permit_Seal required

Implicit
sealing
upon
domain
switching

Y - -

Explicit
unsealing

- Matching otype and
Permit_Unseal required

Matching otype and
Permit_Unseal required

Implicit
unsealing
upon
domain
switching

Anyone can perform
domain switching

Matching otype and
Permit_CInvoke sealed entry
capabilities for code and
data required

-

Bibliography
▪ [1] Robert N M Watson, Peter G Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary,

Jonathan Anderson, John Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis,
Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou, Ben Laurie, A
Theodore Markettos, Simon W Moore, Steven J Murdoch, Kyndylan Nienhuis, Robert Norton,
Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8).

▪ [2] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Wesley Filardo, Kunyan Liu,
Robert M Norton, Yucong Tao, Robert N M Watson, and Hongyan Xia. CHERIoT: Rethinking
security for low-cost embedded systems.

60

	The Capstone-RISC-V Instruction Set Reference
	Table of Contents
	1. Introduction
	1.1. Properties to Support
	1.2. Major Design Elements
	1.3. Capstone-RISC-V ISA Overview
	1.4. Assembly Mnemonics
	1.5. Notations
	1.6. Bibliography

	2. Programming Model
	2.1. Capabilities
	2.2. Extension to General-Purpose Registers
	2.3. Extension to Other Registers
	2.4. Added Registers
	2.5. Extension to Memory
	2.6. Instruction Set
	2.7. System Reset

	3. Capability Manipulation Instructions
	3.1. Cursor, Bounds, and Permissions Manipulation
	3.2. Type Manipulation
	3.3. Dropping
	3.4. Revocation

	4. Memory Access Instructions
	4.1. Load Capabilities
	4.2. Store Capabilities

	5. Control Flow Instructions
	5.1. Jump to Capabilities
	5.2. Domain Crossing
	5.3. World Switching

	6. Control and Status Instructions
	7. Adjustments to Existing Instructions
	7.1. Memory Access Instructions
	7.2. Control Flow Instructions
	7.3. Illegal Instructions

	8. Interrupts and Exceptions
	8.1. Exception and Exit Codes
	8.2. Exception Data
	8.3. Handling of Secure-World Interrupts
	8.4. Handling of Secure-World Exceptions

	Appendix A: Instruction Listing
	A.1. Capstone Instructions
	A.2. Extended RV64IZicsr Memory Access Instructions

	Appendix B: Comparison with Other Capability-Based ISA Extensions to RISC-V
	B.1. Commonalities
	B.2. Differences
	Bibliography

