The Capstone-RISC-V Instruction Set

Reference

Table of Contents

1. Introduction
1.1. Goals
1.2. Major Design Elements
1.3. Capstone-RISC-V ISA Overview
1.4. Assembly Mnemonics
1.5. Notations
1.6. Bibliography
2. Programming Model
2.1. Capabilities
2.2. Extension to General-Purpose Registers
2.3. Extension to Other Registers
2.4. Extension to Memory
2.5. Instruction Set
3. Capability Manipulation Instructions
3.1. Cursor, Bounds, and Permissions Manipulation
3.2. Type Manipulation
3.3. Dropping
3.4. Revocation
4. Memory Access Instructions
4.1. Load/Store with Capabilities
4.2. Load/Store Capabilities
5. Control Flow Instructions
5.1. Jump to Capabilities
5.2. Domain Crossing
5.3. World Switching
6. Adjustments to Existing Instructions
7. Interrupts and Exceptions
8. Memory Consistency Model
Appendix A: Debugging Instructions
Appendix B: Instruction Listing
Appendix C: Assembly Code Examples
Appendix D: Abstract Binary Interface (Non-Normative)

© © © 00 4 39 o U U1 U b= b

[N T N S S e S S e e ey
N R 00 J O Ul AR W W W WNDNDDNDO O O o o



Contributors to this document include (in alphabetical order): Jason Zhijingcheng Yu



Version Information: Draft version. Refer to the commit hash.



1. Introduction

The Capstone project is an effort to explore the design of a new CPU instruction set architecture
that achieves multiple security goals including memory safety and isolation with one unified
hardware abstraction.

1.1. Goals

The ultimate goal of Capstone is to unify the numerous hardware abstracts that have been added as
extensions to existing architectures as afterthought mitigations to security vulnerabilities. This goal
requires a high level of flexibility and extensibility of the Capstone architecture. More specifically,
we aim to support the following in a unified manner.

Exclusive access

Software should be guaranteed exclusive access to certain memory regions if needed. This is in
spite of the existence of software traditionally entitled to higher privileges such as the OS kernel
and the hypervisor.

Revocable delegation

Software components should be able to delegate authority to other components in a revocable
manner. For example, after an untrusted library function has been granted access to a memory
region, the caller should be able to revoke this access.

Dynamically extensible hierarchy

The hierarchy of authority should be dynamically extensible, unlike traditional platforms which
follow a static hierarchy of hypervisor-kernel-user. This makes it possible to use the same set of
abstractions for memory isolation and memory sharing regardless of where a software
component lies in the hierarchy.

Safe context switching

A mechanism of context switching without trusting any other software component should be
provided. This allows for a minimal TCB if necessary in case of a highly security-critical
application.

1.2. Major Design Elements

The Capstone architecture design is based on the idea of capabilities, which are unforgeable tokens
that represent authority to perform memory accesses and control flow transfers. Capstone extends
the traditional capability model with new capability types including the following.

Linear capabilities

Linear capabilities are guaranteed not to alias with other capabilities. Operations on linear
capabilities maintain this property. For example, linear capabilities cannot be duplicated.
Instead, they can only be moved around across different registers or between registers and
memory. They can hence enable safe exclusive access to memory regions. Capabilities that do
not have this property are called non-linear capabilities.



Revocation capabilities
Revocation capabilities cannot be used to perform memory accesses or control flow transfers.
Instead, they convey the authority to revoke other capabilities. Each revocation capability is
derived from a linear capability and can later be used to revoke (i.e., invalidate) capability
derived from the same linear capability. This mechanism enables revocable and arbitrarily
extensible chains of delegation of authority.

Uninitialised capabilities
Uninitialised capabilities convey write-only authority to memory. They can be turned into linear
capabilities after the memory region has been "initialised", that is, when the whole memory

region has been overwritten with fresh data. Uninitialised capabilities enable safe initialisation
of memory regions and prevent secret leakage without incurring extra performance overhead.

1.3. Capstone-RISC-V ISA Overview

While Capstone does not assume any specific modern ISA, we choose to propose a Capstone
extension to RISC-V due to its open nature and the availability of toolchains and simulators.

The Capstone-RISC-V ISA is a 64-bit RISC-V extension that makes the following types of changes to
the base architecture:

* Each general-purpose register is extended to 129 bits to accomodate 128-bit capabilities.

* New instructions for manipulating capabilities are added.

* New instructions for memory accesses using capabilities are added.

* New instructions for control flow transfers using capabilities are added.

» Semantics of a small number of existing instructions are changed to support capabilities.

* Semantics of interrupts and exceptions are changed to support capabilities.

1.4. Assembly Mnemonics

Each Capstone-RISC-V instruction is given a mnemonic prefixed with CS.. In contexts where it is
clear we are discussing Capstone-RISC-V instructions, we will omit the CS. prefix for brevity.

In assembly code, the list of operands to an instruction is supplied following the instruction
mnemonic, with the operands separated by commas, in the order of rd, rs1, rs2, imm for any operand
the instruction expects.

1.5. Notations

When specifying the semantics of instructions, we use the following notations to represent the type
of each operand:

I

Integer register.



Capability register.
Sign-extended immediate.

Zero-extended immediate.

1.6. Bibliography
The initial design of Capstone has been discussed in the following paper:

* Capstone: A Capability-based Foundation for Trustless Secure Memory Access by Jason
Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, Prateek Saxena. In Proceedings
of the 32nd USENIX Security Symposium. Annaheim, CA, USA. August 2023.


https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

2. Programming Model

The Capstone-RISC-V ISA has extended the part of the machine state, including both some registers
and the memory, to enable the storage and handling of capabilities.

2.1. Capabilities

2.1.1. Width

The width of a capability is 128 bits. We represent this as CLEN = 128. Note that this does not affect
the width of a raw address, which is XLEN = 64 bits.

2.1.2. Fields
Each capability has the following architecturally-visible fields:

Table 1. Fields in a capability
Name Range Description

type 0..5 The type of the capability: 0 =
linear, 1 = non-linear, 2 =
revocation, 3 = uninitialised, 4 =
sealed, 5 = sealed-return

cursor 0..2"XLEN-1 The memory address the
capability points to (to be used
for the next memory access)

base 0..2"XLEN-1 The base memory address of
the memory region associated
with the capability

length 0..2"XLEN-1 The length of the memory
region associated with the
capability

perms 0..4 The permissions associated

with the capability: @ = no
access, 1 =read-only, 2 = read-
execute, 3 = read-write, 4 = read-
write-execute

Note

Implementations are free to maintain additional fields to capabilities or compress the
representation of the above fields, as long as each capability fits in CLEN bits.



2.2. Extension to General-Purpose Registers

The Capstone-RISC-V ISA extends each of the 32 general-purpose registers, so it contains either a
capability or a raw XLEN-bit integer. The type of data contained in a register is maintained and
confusion of the type is not allowed. In assembly code, the type of data expected in a register
operand is indicated by the alias used for the register, as summarised in the following table.

XLEN-bit integer Capability
x@/zero c0/cnull
x1/ra cl/era
x2/sp c2/csp
x3/gp c3/cgp
x4/tp cd/ctp
x5/t0 c5/ct0
x6/t1 cb/ctl
x7/t2 c//ct2
x8/s0/fp c8/cs0/cfp
x9/s1 c9/cs1
x10/a0 c10/cab
x11/a1 c11/cal
x12/a2 c12/ca2
x13/a3 c13/ca3
x14/a4 c14/ca4
x15/a5 c15/ca5
x16/ab c16/cab
x17/a7 c17/ca7
x18/s2 c18/cs2
x19/s3 c19/cs3
x20/s4 c20/cs4
x21/s5 c21/csh
x22/s6 c22/csb
x23/s7 c23/cs7
x24/s8 c24/cs8
x25/s9 c25/cs9
x26/s10 c26/cs10
x27/s11 c27/es11



XLEN-bit integer Capability

x28/t3 c28/ct3
x29/t4 c29/ct4
x30/t5 c30/ct5
x31/t6 c31/ctb

2.3. Extension to Other Registers

The program counter (pc) register is extended to contain a capability.

2.4. Extension to Memory

The memory is addressed using an XLEN-bit integer at byte-level granularity. In addition to raw
integers, each CLEN-bit aligned address can also store a capability. The type of data contained in a
memory location is maintained and confusion of the type is not allowed.

2.5. Instruction Set

The Capstone-RISC-V instruction set is based on the RV64G instruction set. The (uncompressed)
instructions are fixed 32-bit wide, and laid out in memory in little-endian order. In the encoding
space of the RV64G instruction set, Capstone-RISC-V instructions occupies the "custom-2" subset, i.e.,
the opcode of all Capstone-RISC-V instructions is 0b1011011.

Capstone-RISC-V instruction encodings follow two basic formats: R-type and I-type, as described
below (more details are also provided in the RISC-V ISA Manual).

31 25 24 20 19 15 14 12 11 7 6 0
func?7 rs2 rsl func3 rd 0b1011011

Figure 1. R-type instruction format

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsl func3 rd 0b1011011

Figure 2. I-type instruction format

R-type instructions receive up to three register operands, and I-type instructions receive up to two
register operands and a 12-bit-wide immediate operand.



3. Capability Manipulation Instructions

3.1. Cursor, Bounds, and Permissions Manipulation
3.1.1. Capability Movement

3.1.2. Cursor Increment

The CINCOFFSET and CINCOFFSETIMM instructions increment the cursor of a capability by a give
amount.

31 25 24 20 19 15 14 12 11 7 6 0
0b0001101 rs2 (1) rs1 (C) 0b001 rd (C) 001011011

Figure 3. CINCOFFSET instruction format

31 20 19 15 14 12 11 7 6 0
imm[11:0] (S) rs1 (C) 0b011 rd (C) 0b1011011

FigL;re ;z. C:INCOFFSETIMM instruction format
3.1.3. Cursor Setter and Getter
3.1.4. Bounds Shrinking

3.1.5. Bounds Splitting

3.1.6. Permission Tightening

3.2. Type Manipulation

3.2.1. Delinearisation
3.2.2. Initialisation

3.2.3. Sealing
3.3. Dropping

3.4. Revocation

3.4.1. Revocation Capability Creation

The MREV instruction creates a revocation capability.

10



31 25 24 20 19
0b0001000 *

rél(é)

15 14 12 11
0b001

rﬁ(Cﬁ

0b1011011

Figure 5. MREV instruction format

3.4.2. Revocation Operation

The REVOKE instruction revokes a capability.

11



4. Memory Access Instructions
4.1. Load/Store with Capabilities

4.2. Load/Store Capabilities

12



5. Control Flow Instructions
5.1. Jump to Capabilities
5.2. Domain Crossing

5.3. World Switching

13



6. Adjustments to Existing Instructions

TODO

14



7. Interrupts and Exceptions

TODO

15



8. Memory Consistency Model

TODO

16



Appendix A: Debugging Instructions

TODO

17



Appendix B: Instruction Listing

31 . 2524 2019 1514 1211 76
f.unc.7 ‘rszl ‘rsll ‘ f.unc.3 ‘ rd ‘ ‘Ob1‘011‘011‘
Figure 6. Instruction format: R-type
31 . 2019 1514 1211 7 6
ir.nm[lll:(?] ‘rsll ‘ f.unc.3 ‘ rd ‘ ‘0b1‘011f)11‘
Figure 7. Instruction format: I-type
Table 2. Debugging instructions
Mnemonic Format Func3 Func7 rsl rs2 rd imm[11:0]
QUERY R 000 0000000 I ; B} B
DROP R 000 0000001 C - - -
RCUPDATE R 000 0000010 I . I a
ALLOC R 000 0000011 I - I -
REVOKET R 000 0000100 I - B} B}
CAPCREATE R 000 0000101 - : C i
CAPTYPE R 000 0000110 I - C -
CAPNODE R 000 0000111 I i, C .
CAPPERM R 000 0001000 I ; C B
CAPBOUND R 000 0001001 I I C -
CAPPRINT R 000 0001010 I . B} a
TAGSET R 000 0001011 I I - ,
TAGGET R 000 0001100 I - I -
Table 3. Capability manipulation instructions
Mnemonic Format Func3 Func7 rsil rs2 rd imm[11:0]
REVOKE R 001 0000000 C - - -
SHRINK R 001 0000001 I I C -
TIGHTEN R 001 0000010 I - C -
DELIN R 001 0000011 - - C -
LCC R 001 0000100 C - I -
ScC R 001 0000101 I - C -
SPLIT R 001 0000110 C I C -
SEAL R 001 0000111 - - C -
MREV R 001 0001000 C - C -

18



#revcap-creation
#shrink
#tighten
#delin
#cursor-set-get
#cursor-set-get
#split
seal
#rev-operation

Mnemonic

INIT

MOVC

DROPI

CAPGET

CINCOFESET

CINCOFFSETIMM

Format

~ ™ =™ =™ =

I

Table 4. Memory access instructions

Mnemonic

LDC
STC
LDD
STD
LDW
STW
LDH
STH
LDB
STB

Table 5. Control flow instructions

Mnemonic

CALL

RETURN

JMP
INZ
CAPE

CAPEXIT
CAPEXITSEAL

~ & ©® ® ® ® =® ® ® ©

R
R
R
R
NTER R
R
R

Format

Format

For instruction operands:

I

Integer register

Func3
001

001
001
001
001
011

Func3

001
001
001
001
001
001
001
001
001
001

Func3
001

001

001

001

001

001

001

Func7
0001001

0001010
0001011
0001100
0001101

Func7
0010000

0010001
0010010
0010011
0010100
0010101
0010110
0010111
0011000
0011001

Func7
0100000

0100001
0100010
0100011
0100100
0100101
0100110

Note

rsi

rsi

o O O O O O O O O O

rsil

rs2

rs2

rs2

rd

rd

imm[11:0]

imm][11:0]

imm[11:0]

19


#init
#cap-mov
#drop
#cursor-inc
#cursor-inc
#load-store-cap
#load-store-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#domain-cross
#domain-cross
#jmp-cap
#jmp-cap
#world-switch
#world-switch
#world-switch

20

Capability register

Not used
For immediates:

S

Sign-extended

Zero-extended

Not used



Appendix C: Assembly Code Examples

TODO

21



Appendix D: Abstract Binary Interface (Non-
Normative)

TODO

22



	The Capstone-RISC-V Instruction Set Reference
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Major Design Elements
	1.3. Capstone-RISC-V ISA Overview
	1.4. Assembly Mnemonics
	1.5. Notations
	1.6. Bibliography

	2. Programming Model
	2.1. Capabilities
	2.2. Extension to General-Purpose Registers
	2.3. Extension to Other Registers
	2.4. Extension to Memory
	2.5. Instruction Set

	3. Capability Manipulation Instructions
	3.1. Cursor, Bounds, and Permissions Manipulation
	3.2. Type Manipulation
	3.3. Dropping
	3.4. Revocation

	4. Memory Access Instructions
	4.1. Load/Store with Capabilities
	4.2. Load/Store Capabilities

	5. Control Flow Instructions
	5.1. Jump to Capabilities
	5.2. Domain Crossing
	5.3. World Switching

	6. Adjustments to Existing Instructions
	7. Interrupts and Exceptions
	8. Memory Consistency Model
	Appendix A: Debugging Instructions
	Appendix B: Instruction Listing
	Appendix C: Assembly Code Examples
	Appendix D: Abstract Binary Interface (Non-Normative)

