
The Capstone-RISC-V Instruction Set
Reference

Table of Contents
1. Introduction. 4

1.1. Goals. 4

1.2. Major Design Elements . 4

1.3. Capstone-RISC-V ISA Overview . 5

1.4. Assembly Mnemonics . 5

1.5. Notations. 5

1.6. Bibliography. 6

2. Programming Model . 7

2.1. Capabilities . 7

2.2. Extension to General-Purpose Registers . 9

2.3. Extension to Other Registers . 10

2.4. Added Registers. 10

2.5. Extension to Memory. 10

2.6. Instruction Set . 11

3. Capability Manipulation Instructions . 12

3.1. Cursor, Bounds, and Permissions Manipulation. 12

3.2. Type Manipulation . 14

3.3. Dropping. 16

3.4. Revocation . 16

4. Memory Access Instructions . 18

4.1. Load/Store with Capabilities . 18

4.2. Load/Store Capabilities . 18

5. Control Flow Instructions. 19

5.1. Jump to Capabilities . 19

5.2. Domain Crossing. 19

5.3. World Switching . 21

6. Adjustments to Existing Instructions. 22

7. Interrupts and Exceptions . 23

8. Memory Consistency Model. 24

Appendix A: Debugging Instructions (Non-Normative) . 25

Appendix B: Instruction Listing . 26

Appendix C: Assembly Code Examples . 29

Appendix D: Abstract Binary Interface (Non-Normative) . 30

1

Contributors to this document include (in alphabetical order): Jason Zhijingcheng Yu

2

Version Information: Draft version. Refer to the commit hash.

3

1. Introduction
The Capstone project is an effort to explore the design of a new CPU instruction set architecture
that achieves multiple security goals including memory safety and isolation with one unified
hardware abstraction.

1.1. Goals
The ultimate goal of Capstone is to unify the numerous hardware abstracts that have been added as
extensions to existing architectures as afterthought mitigations to security vulnerabilities. This goal
requires a high level of flexibility and extensibility of the Capstone architecture. More specifically,
we aim to support the following in a unified manner.

Exclusive access

Software should be guaranteed exclusive access to certain memory regions if needed. This is in
spite of the existence of software traditionally entitled to higher privileges such as the OS kernel
and the hypervisor.

Revocable delegation

Software components should be able to delegate authority to other components in a revocable
manner. For example, after an untrusted library function has been granted access to a memory
region, the caller should be able to revoke this access.

Dynamically extensible hierarchy

The hierarchy of authority should be dynamically extensible, unlike traditional platforms which
follow a static hierarchy of hypervisor-kernel-user. This makes it possible to use the same set of
abstractions for memory isolation and memory sharing regardless of where a software
component lies in the hierarchy.

Safe context switching

A mechanism of context switching without trusting any other software component should be
provided. This allows for a minimal TCB if necessary in case of a highly security-critical
application.

1.2. Major Design Elements
The Capstone architecture design is based on the idea of capabilities, which are unforgeable tokens
that represent authority to perform memory accesses and control flow transfers. Capstone extends
the traditional capability model with new capability types including the following.

Linear capabilities

Linear capabilities are guaranteed not to alias with other capabilities. Operations on linear
capabilities maintain this property. For example, linear capabilities cannot be duplicated.
Instead, they can only be moved around across different registers or between registers and
memory. They can hence enable safe exclusive access to memory regions. Capabilities that do
not have this property are called non-linear capabilities.

4

Revocation capabilities

Revocation capabilities cannot be used to perform memory accesses or control flow transfers.
Instead, they convey the authority to revoke other capabilities. Each revocation capability is
derived from a linear capability and can later be used to revoke (i.e., invalidate) capability
derived from the same linear capability. This mechanism enables revocable and arbitrarily
extensible chains of delegation of authority.

Uninitialised capabilities

Uninitialised capabilities convey write-only authority to memory. They can be turned into linear
capabilities after the memory region has been "initialised", that is, when the whole memory
region has been overwritten with fresh data. Uninitialised capabilities enable safe initialisation
of memory regions and prevent secret leakage without incurring extra performance overhead.

1.3. Capstone-RISC-V ISA Overview
While Capstone does not assume any specific modern ISA, we choose to propose a Capstone
extension to RISC-V due to its open nature and the availability of toolchains and simulators.

The Capstone-RISC-V ISA is a 64-bit RISC-V extension that makes the following types of changes to
the base architecture:

• Each general-purpose register is extended to 129 bits to accommodate 128-bit capabilities.

• New instructions for manipulating capabilities are added.

• New instructions for memory accesses using capabilities are added.

• New instructions for control flow transfers using capabilities are added.

• Semantics of a small number of existing instructions are changed to support capabilities.

• Semantics of interrupts and exceptions are changed to support capabilities.

1.4. Assembly Mnemonics
Each Capstone-RISC-V instruction is given a mnemonic prefixed with CS.. In contexts where it is
clear we are discussing Capstone-RISC-V instructions, we will omit the CS. prefix for brevity.

In assembly code, the list of operands to an instruction is supplied following the instruction
mnemonic, with the operands separated by commas, in the order of rd, rs1, rs2, imm for any operand
the instruction expects.

1.5. Notations
When specifying the semantics of instructions, we use the following notations to represent the type
of each operand:

I

Integer register.

5

C

Capability register.

S

Sign-extended immediate.

Z

Zero-extended immediate.

1.6. Bibliography
The initial design of Capstone has been discussed in the following paper:

• Capstone: A Capability-based Foundation for Trustless Secure Memory Access by Jason
Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, Prateek Saxena. In Proceedings
of the 32nd USENIX Security Symposium. Anaheim, CA, USA. August 2023.

6

https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

2. Programming Model
The Capstone-RISC-V ISA has extended the part of the machine state, including both some registers
and the memory, to enable the storage and handling of capabilities.

2.1. Capabilities

2.1.1. Width

The width of a capability is 128 bits. We represent this as CLEN = 128. Note that this does not affect
the width of a raw address, which is XLEN = 64 bits.

2.1.2. Fields

Each capability has the following architecturally-visible fields:

Table 1. Fields in a capability

Name Range Description

valid 0..1 Whether the capability is valid:
0 = invalid, 1 = valid

type 0..5 The type of the capability: 0 =
linear, 1 = non-linear, 2 =
revocation, 3 = uninitialised, 4 =
sealed, 5 = sealed-return

cursor 0..2^XLEN-1 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). The memory address
the capability points to (to be
used for the next memory
access)

base 0..2^XLEN-1 The base memory address of
the memory region associated
with the capability

end 0..2^XLEN-1 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). The end memory
address of the memory region
associated with the capability

7

Name Range Description

perms 0..4 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). The permissions
associated with the capability: 0
= no access, 1 = read-only, 2 =
read-execute, 3 = read-write, 4 =
read-write-execute

count 0..31 Only applicable when type = 4
(sealed) or type = 5 (sealed-
return). The number of register
values sealed in the region

reg 0..31 Only applicable when type = 5
(sealed-return). The index of the
general-purpose register to
restore the capability to

worldswitched 0..1 Only applicable when type = 5
(sealed-return). Whether a
world switch is involved. 0 = no
world switch, 1 = world switch

The range of the perms field has a partial order ⇐ defined as follows:

<= = { (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 1), (0, 2), (0, 3), (0, 4),
 (1, 2), (1, 3), (1, 4), (2, 4), (3, 4) }

We say a capability c aliases with a capability d if and only if the intersection between [c.base,
c.end) and [d.base, d.end) is non-empty.

For two revocation capabilities c and d (i.e., c.type = d.type = 2), we say c <t d if and only if

• c aliases with d

• The creation of c was earlier than the creation of d

In addition to the above fields, an implementation also needs to maintain sufficient metadata to test
the <t relation. It will be clear that for any pair of revocation capabilities that alias, the order of
their creations is well-defined.

Note

The valid field is involved in revocation, where it might be changed due to a revocation
operation on a different capability. A performant implementation, therefore, may prefer not
to maintain the valid field inline with the other fields.

Implementations are free to maintain additional fields to capabilities or compress the

8

#revocation
#rev-operation
#rev-operation

representation of the above fields, as long as each capability fits in CLEN bits. It is not required
to be able to represent capabilities with all combinations of field values, as long as the
following conditions are satisfied:

• For load and store instructions that move a capability between a register and memory, the
value of the capability is preserved.

• The resulting capability values of any operation are not more powerful than when the
same operation is performed on a Capstone-RISC-V implementation without compression.
More specifically, if an execution trace is valid (i.e., without exceptions) on the
compressed implementation, then it must also be valid on the uncompressed
implementation. For example, a trivial yet useless compression would be to store nothing
and always return a capability with valid = 0 (TODO: double-check this claim).

2.2. Extension to General-Purpose Registers
The Capstone-RISC-V ISA extends each of the 32 general-purpose registers, so it contains either a
capability or a raw XLEN-bit integer. The type of data contained in a register is maintained and
confusion of the type is not allowed, except for x0/c0 as discussed below. In assembly code, the type
of data expected in a register operand is indicated by the alias used for the register, as summarised
in the following table.

XLEN-bit integer Capability

x0/zero c0/cnull

x1/ra c1/cra

x2/sp c2/csp

x3/gp c3/cgp

x4/tp c4/ctp

x5/t0 c5/ct0

x6/t1 c6/ct1

x7/t2 c7/ct2

x8/s0/fp c8/cs0/cfp

x9/s1 c9/cs1

x10/a0 c10/ca0

x11/a1 c11/ca1

x12/a2 c12/ca2

x13/a3 c13/ca3

x14/a4 c14/ca4

x15/a5 c15/ca5

x16/a6 c16/ca6

9

XLEN-bit integer Capability

x17/a7 c17/ca7

x18/s2 c18/cs2

x19/s3 c19/cs3

x20/s4 c20/cs4

x21/s5 c21/cs5

x22/s6 c22/cs6

x23/s7 c23/cs7

x24/s8 c24/cs8

x25/s9 c25/cs9

x26/s10 c26/cs10

x27/s11 c27/cs11

x28/t3 c28/ct3

x29/t4 c29/ct4

x30/t5 c30/ct5

x31/t6 c31/ct6

x0/c0 is a read-only register that can be used both as an integer and as a capability, depending on
the context. When used as an integer, it has the value 0. When used as a capability, it has the value {
valid = 0, type = 0, cursor = 0, base = 0, end = 0, perms = 0 }. Any attempt to write to x0/c0
will be silently ignored (no exceptions are raised).

2.3. Extension to Other Registers
Similar to the general-purpose registers, the program counter (pc) is also extended to contain a
capability or an integer.

2.4. Added Registers
The Capstone-RISC-V ISA adds the following registers:

• ceh: the sealed capability for the exception handler.

• cwrld: the currently executed world. 0 = normal world, 1 = secure world.

TODO: talk about how to read/write those registers.

2.5. Extension to Memory
The memory is addressed using an XLEN-bit integer at byte-level granularity. In addition to raw
integers, each CLEN-bit aligned address can also store a capability. The type of data contained in a
memory location is maintained and confusion of the type is not allowed.

10

2.6. Instruction Set
The Capstone-RISC-V instruction set is based on the RV64G instruction set. The (uncompressed)
instructions are fixed 32-bit wide, and laid out in memory in little-endian order. In the encoding
space of the RV64G instruction set, Capstone-RISC-V instructions occupies the "custom-2" subset, i.e.,
the opcode of all Capstone-RISC-V instructions is 0b1011011.

Capstone-RISC-V instruction encodings follow two basic formats: R-type and I-type, as described
below (more details are also provided in the RISC-V ISA Manual).

067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 1. R-type instruction format

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 2. I-type instruction format

R-type instructions receive up to three register operands, and I-type instructions receive up to two
register operands and a 12-bit-wide immediate operand.

11

3. Capability Manipulation Instructions
Capstone provides instructions for creating, modifying, and destroying capabilities. Note that due to
the guarantee of provenance of capabilities, those instructions are the only way to manipulate
capabilities. In particular, it is not possible to manipulate capabilities by manipulating the content
of a memory location or register using other instructions.

3.1. Cursor, Bounds, and Permissions Manipulation

3.1.1. Capability Movement

Capabilities can be moved between registers with the MOVC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001010

Figure 3. MOVC instruction format

An exception is raised when any of the following conditions are met:

• rs1 does not contain a capability

If no exception is raised: If rs1 is the same register as rd, the instruction is a no-op. If rs1 is not the
same register as rd, rd will contain the original content of rs1, and if the content is not a non-linear
capability (i.e., type != 1), rs1 will be set to the content of cnull.

3.1.2. Cursor Increment

The CINCOFFSET and CINCOFFSETIMM instructions increment the cursor of a capability by a give
amount (offset).

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001101

Figure 4. CINCOFFSET instruction format

06711121415192031

0b1011011rd (C)0b011rs1 (C)imm[11:0] (S)

Figure 5. CINCOFFSETIMM instruction format

An exception is raised when any of the following conditions are met:

• rs1 does not contain a capability.

• rs2 does not contain an integer (for CINCOFFSET).

• The capability in rs1 has type = 3 (uninitialised).

If no exception is raised: For CINCOFFSET, the offset is read from rs2. For CINCOFFSETIMM, the
offset is the 12-bit sign-extended immediate field imm. If the offset is 0, the instructions are
semantically equivalent to MOVC rd, rs1. Otherwise, the instructions are equal to an atomic

12

execution of MOVC rd, rs1 followed by an increment of the cursor field of rd by the offset.

3.1.3. Cursor Setter and Getter

The cursor field of a capability can also be directly set and read with the SCC and LCC instructions
respectively.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)*0b0000101

Figure 6. SCC instruction format

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0000100

Figure 7. LCC instruction format

For SCC, an exception is raised if any of the following conditions are met:

• rd does not contain a capability.

• rs1 does not contain an integer.

• The capability in rd has type = 3 (uninitialised), type = 4 (sealed), or type = 5 (sealed-return).

For LCC, an exception is raised if any of the following conditions are met:

• rs1 does not contain a capability.

• The capability in rs1 has type = 4 (sealed) or type = 5 (sealed-return).

3.1.4. Bounds Shrinking

The bounds (base and end fields) of a capability can be shrunk with the SHRINK instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)rs2 (I)0b0000001

Figure 8. SHRINK instruction format

The instruction reads rs1 and rs2 and attempts to set the bounds of the capability in rd to [rs1,
rs2).

An exception is raised when any of the following conditions are met:

• rd does not contain a capability.

• The type field of the capability in rd is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• rs1 does not contain an integer.

• rs2 does not contain an integer.

• rs1 > rs2.

• The original bounds of the capability in rd are [base, end) and rs1 < base or rs2 > end.

13

3.1.5. Bounds Splitting

The SPLIT instruction can split a capability into two by splitting the bounds.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000110

Figure 9. SPLIT instruction format

The instruction reads a capability from rs1 and an integer from rs2 and attempts to split the
capability into two capabilities, one with bounds [base, rs2) and the other with bounds [rs2, end),
assuming the original bounds were [base, end).

An exception is raised when any of the following conditions are met:

• rs1 does not contain a capability.

• rs2 does not contain an integer.

• The type field of the capability in rs1 is neither 0 nor 1 (neither linear nor non-linear).

• The original bounds of the capability in rs1 are [base, end) and rs2 < base or rs2 > end.

If no exception is raised: The capability in rs1 has its end field set to rs2. A new capability is
created with base = rs2 and the other fields equal to those of the original capability in rs1. The new
capability is written to rd.

3.1.6. Permission Tightening

The TIGHTEN instruction tightens the permissions (perms field) of a capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)*0b0000010

Figure 10. TIGHTEN instruction format

The instruction reads the new permissions from rs1 and attempts to set the perms field of the
capability in rd to rs1.

An exception is raised when any of the following conditions are met:

• rd does not contain a capability.

• The type field of the capability in rd is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• rs1 does not contain an integer.

• The content of rs1 is outside the range of perms.

• The perms field of the capability in rd is p and rs1 ⇐ p does not hold.

3.2. Type Manipulation
Some instructions affect the type field of a capability.

14

3.2.1. Delinearisation

The DELIN instruction delinearises a linear capability.

067111214151920242531

0b1011011rd (C)0b001**0b0000011

Figure 11. DELIN instruction format

An exception is raised when any of the following conditions are met:

• rd does not contain a capability.

• The type field of the capability in rd is not 0 (linear).

If no exception is raised: The type field of the capability in rd is set to 1 (non-linear).

3.2.2. Initialisation

The INIT instruction transforms an uninitialised capability into a linear capability after its
associated memory region has been fully initialised (written with new data).

067111214151920242531

0b1011011rd (C)0b001**0b0001001

Figure 12. INIT instruction format

An exception is raised when any of the following conditions are met:

• rd does not contain a capability.

• The type field of the capability in rd is not 3 (uninitialised).

• The end field and the cursor field of the capability in rd are not equal.

If no exception is raised: The type field of the capability in rd is set to 0 (linear).

3.2.3. Sealing

The SEAL instruction seals a linear capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)*0b0000111

Figure 13. SEAL instruction format

An exception is raised when any of the following conditions are met:

• rd does not contain a capability.

• The type field of the capability in rd is not 0 (linear).

• The perms field of the capability in rd is not 3 (read-write) or 4 (read-write-execute).

• The size of the memory region associated with the capability in rd is smaller than CLEN * 32.
That is, end - base < CLEN * 32.

15

• rs1 does not contain an integer.

• The integer contained in rs1 is not larger than 31.

If no exception is raised: The type field of the capability in rd is set to 2 (sealed). The count field set
to the integer contained in rs1.

3.3. Dropping
TODO: check whether dropping is actually necessary.

The DROP instruction invalidates a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0001011

Figure 14. DROP instruction format

An exception is raised when any of the following conditions are met:

• rs1 does not contain a capability.

If no exception is raised: The valid field of the capability in rs1 is set to 0 (invalid).

3.4. Revocation

3.4.1. Revocation Capability Creation

The MREV instruction creates a revocation capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001000

Figure 15. MREV instruction format

An exception is raised when any of the following conditions are met:

• rs1 does not contain a capability.

• The type field of the capability in rs1 is not 0 (linear).

• The valid field of the capability in rs1 is 0 (invalid).

If no exception is raised: A new capability is created in rd with the same base, end, perms, cursor,
and offset fields as the capability in rs1. The type field of the new capability is set to 2 (revocation).

3.4.2. Revocation Operation

The REVOKE instruction revokes a capability.

16

067111214151920242531

0b1011011*0b001rs1 (C)*0b0000000

Figure 16. REVOKE instruction format

An exception is raised when any of the following conditions are met:

• rs1 does not contain a capability.

• The type field of the capability in rs1 is not 2 (revocation).

• The valid field of the capability in rs1 is 0 (invalid).

If no exception is raised: For all capabilities c in the system (in either a register or memory
location), its valid field is set to 0 (invalid) if any of the following conditions are met:

• The type field of c is not 2 (revocation), the valid field of c is 1 (valid), and c aliases with rs1

• The type field of c is 2 (revocation), the valid field of c is 1 (valid), and rs1 <t c

If any c that is not a non-linear capability (i.e., c.type != 1) is invalidated, then the type field of rs1
is set to 3 (uninitialised), and its cursor field is set to base. Otherwise, the type field of rs1 is set to 0
(linear).

17

4. Memory Access Instructions

4.1. Load/Store with Capabilities

4.2. Load/Store Capabilities

18

5. Control Flow Instructions

5.1. Jump to Capabilities
The JMP and JNZ instructions allow jumping to a capability, i.e., setting the program counter to a
given capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0100010

Figure 17. JMP instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100011

Figure 18. JNZ instruction format

An exception is raised when any of the following conditions are met:

• cwrld is 0 (normal world).

• rs1 does not contain a capability.

If no exception is raised: For JMP instruction, the program counter (pc) is set to the capability in
rs1. If the capability is valid and executable, the next instruction will be fetched from its cursor
field.

The behaviour of JNZ depends on the content of rs2:

• If the content of rs2 is zero (0), the behaviour is the same as for NOP.

• Otherwise, the behaviour is the same as for JMP.

5.2. Domain Crossing
Domains in Capstone-RISC-V are individual software compartments that are protected by a safe
context switching mechanism, i.e., domain crossing. The mechanism is provided by the CALL and
RETURN instructions.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0100000

Figure 19. CALL instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100001

Figure 20. RETURN instruction format

An exception is raised when any of the following conditions are met:

• cwrld is 0 (normal world).

19

• rs1 does not contain a capability.

• The valid field of the capability in rs1 is 0 (invalid).

• The type field of the capability in rs1 is not 4 (sealed).

For RETURN, an exception is raised also when any of the following conditions are met:

• rs2 does not contain an integer

If no exception is raised:

For CALL:

1. Load the content at the memory location [base, base + CLEN), where base is the base field of the
capability in rs1, to the program counter (pc).

2. For i = 1, 2, …, count, load the content at the memory location [base + i * CLEN, base + (i +
1) * CLEN), where count is the count field of the capability in rs1, to x[i] (the i-th general-
purpose register).

3. Store the old pc value to the memory location [base, base + CLEN), and the old sp value to the
memory location [base + CLEN, base + 2 * CLEN).

4. Set the type field of the capability in rs1 to 5 (sealed-return), and write the capability to the
register cra.

For RETURN when the content of rs1 is 0:

1. Load the content at the memory location [base, base + CLEN), where base is the base field of the
capability in rs1, to the program counter (pc).

2. For i = 1, 2, …, 31, load the content at the memory location [base + i * CLEN, base + (i + 1)
* CLEN), to x[i] (the i-th general-purpose register).

3. Write the old pc value with the cursor field replaced with the content of rs2 to the memory
location [base, base + CLEN).

4. For i = 1, 2, …, count, store the content of x[i] (the i-th general-purpose register) to the
memory location [base + i * CLEN, base + (i + 1) * CLEN), where count is the count field of the
capability in rs1.

5. Set the type field of the capability in rs1 to 4 (sealed), and write the capability to the exception
handler register ceh.

For RETURN when the content of rs1 is not 0:

1. Load the content at the memory location [base, base + CLEN), where base is the base field of the
capability in rs1, to the program counter (pc).

2. Load the content at the memory location [base + CLEN, base + 2 * CLEN), where base is the base
field of the capability in rs1, to the stack pointer (sp).

3. Write the old pc value with the cursor field replaced with the content of rs2 to the memory
location [base, base + CLEN).

4. For i = 1, 2, …, count, store the content of x[i] (the i-th general-purpose register) to the

20

memory location [base + i * CLEN, base + (i + 1) * CLEN), where count is the count field of the
capability in rs1.

5. Set the type field of the capability in rs1 to 4 (sealed), and write the capability to the register
x[reg] where reg is the reg field of the capability in rs1.

5.3. World Switching
TransCapstone-RISC-V is an extended version of Capstone-RISC-V which adds a pair of extra
instructions CAPENTER and CAPEXIT to support switching between the secure world and the
normal world. The CAPENTER instruction causes an entry into the secure world from the normal
world, and the CAPEXIT instruction causes an exit from the secure world into the normal world.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0100100

Figure 21. CAPENTER instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100101

Figure 22. CAPEXIT instruction format

The CAPENTER instruction can only be used in the normal world, whereas the CAPEXIT instruction
can only be used in the secure world. In addition, the CAPEXIT instruction can only be used when
the worldswitch field of the sealed-return instruction is 1 (world switch involved). Attempting to use
those instructions in the wrong world or with the wrong worldswitch field content will cause an
exception. The behaviours of those instructions roughly correspond to the CALL and RETURN
instructions respectively. The differences:

• The CAPENTER instruction sets the worldswitch field of the sealed-return capability to 1 (world
switch involved), and change the cwrld register to 1 (secure world).

• The CAPEXIT instruction changes the cwrld register to 0 (normal world).

21

6. Adjustments to Existing Instructions
TODO

22

7. Interrupts and Exceptions
TODO

23

8. Memory Consistency Model
TODO

24

Appendix A: Debugging Instructions (Non-
Normative)
TODO

25

Appendix B: Instruction Listing
067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 23. Instruction format: R-type

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 24. Instruction format: I-type

Table 2. Debugging instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World

QUERY R 000 0000000 I - - - *

RCUPDATE R 000 0000001 I - I - *

ALLOC R 000 0000010 I - I - *

REV R 000 0000011 I - - - *

CAPCREATE R 000 0000100 - - C - *

CAPTYPE R 000 0000101 I - C - *

CAPNODE R 000 0000110 I - C - *

CAPPERM R 000 0000111 I - C - *

CAPBOUND R 000 0001000 I I C - *

CAPPRINT R 000 0001001 I - - - *

TAGSET R 000 0001010 I I - - *

TAGGET R 000 0001011 I - I - *

Table 3. Capability manipulation instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World

REVOKE R 001 0000000 C - - - *

SHRINK R 001 0000001 I I C - *

TIGHTEN R 001 0000010 I - C - *

DELIN R 001 0000011 - - C - *

LCC R 001 0000100 C - I - *

SCC R 001 0000101 I - C - *

SPLIT R 001 0000110 C I C - *

SEAL R 001 0000111 I - C - *

MREV R 001 0001000 C - C - *

INIT R 001 0001001 - - C - *

26

#rev-operation
#shrink
#tighten
#delin
#cursor-set-get
#cursor-set-get
#split
#seal
#revcap-creation
#init

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World

MOVC R 001 0001010 C - C - *

DROP R 001 0001011 C - - - *

CAPGET R 001 0001100 - - C - N

CINCOFFSET R 001 0001101 C I C - *

CINCOFFSETIMM I 011 - C - C S *

Table 4. Memory access instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World

LDC R 001 0010000 C - C - *

STC R 001 0010001 C C - - *

LDD R 001 0010010 C - I - *

STD R 001 0010011 C I - - *

LDW R 001 0010100 C - I - *

STW R 001 0010101 C I - - *

LDH R 001 0010110 C - I - *

STH R 001 0010111 C I - - *

LDB R 001 0011000 C - I - *

STB R 001 0011001 C I - - *

Table 5. Control flow instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World

CALL R 001 0100000 C - - - S

RETURN R 001 0100001 C I - - S

JMP R 001 0100010 C - - - S

JNZ R 001 0100011 C I - - S

CAPENTER R 001 0100100 C - - - N

CAPEXIT R 001 0100101 C I - - S

Note

For instruction operands:

I

Integer register

C

Capability register

27

#cap-mov
#drop
#cursor-inc
#cursor-inc
#load-store-cap
#load-store-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#load-store-with-cap
#domain-cross
#domain-cross
#jmp-cap
#jmp-cap
#world-switch
#world-switch

-

Not used

For immediates:

S

Sign-extended

Z

Zero-extended

-

Not used

For worlds:

N

Normal world

S

Secure world

*

Either world

28

Appendix C: Assembly Code Examples
TODO

29

Appendix D: Abstract Binary Interface (Non-
Normative)
TODO

30

	The Capstone-RISC-V Instruction Set Reference
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Major Design Elements
	1.3. Capstone-RISC-V ISA Overview
	1.4. Assembly Mnemonics
	1.5. Notations
	1.6. Bibliography

	2. Programming Model
	2.1. Capabilities
	2.2. Extension to General-Purpose Registers
	2.3. Extension to Other Registers
	2.4. Added Registers
	2.5. Extension to Memory
	2.6. Instruction Set

	3. Capability Manipulation Instructions
	3.1. Cursor, Bounds, and Permissions Manipulation
	3.2. Type Manipulation
	3.3. Dropping
	3.4. Revocation

	4. Memory Access Instructions
	4.1. Load/Store with Capabilities
	4.2. Load/Store Capabilities

	5. Control Flow Instructions
	5.1. Jump to Capabilities
	5.2. Domain Crossing
	5.3. World Switching

	6. Adjustments to Existing Instructions
	7. Interrupts and Exceptions
	8. Memory Consistency Model
	Appendix A: Debugging Instructions (Non-Normative)
	Appendix B: Instruction Listing
	Appendix C: Assembly Code Examples
	Appendix D: Abstract Binary Interface (Non-Normative)

