
The Capstone-RISC-V Instruction Set
Reference

Table of Contents
1. Introduction. 5

1.1. Goals. 5

1.2. Major Design Elements . 5

1.3. Capstone-RISC-V ISA Overview . 6

1.4. Capstone-RISC-V ISA Variant . 6

1.5. Assembly Mnemonics . 7

1.6. Notations. 7

1.7. Bibliography. 7

2. Programming Model . 8

2.1. Capabilities . 8

2.2. Extension to General-Purpose Registers . 11

2.3. Extension to Other Registers . 12

2.4. Extension to Memory. 13

2.5. Added Registers. 13

2.6. Instruction Set . 16

3. Capability Manipulation Instructions . 17

3.1. Cursor, Bounds, and Permissions Manipulation. 17

3.2. Type Manipulation . 21

3.3. Dropping. 22

3.4. Revocation . 22

4. Memory Access Instructions . 25

4.1. Load/Store with Capabilities . 25

4.2. Load/Store Capabilities . 27

4.3. TransCapstone Added Instructions. 29

5. Control Flow Instructions. 31

5.1. Jump to Capabilities . 31

5.2. Domain Crossing. 31

5.3. A World Switching Extension for TransCapstone . 34

6. Control and Status Instructions . 37

7. Adjustments to Existing Instructions. 38

7.1. Control Flow Instructions. 38

7.2. Memory Access Instructions . 39

8. Interrupts and Exceptions . 41

8.1. Exception and Exit Codes . 41

1

8.2. Exception Data . 42

8.3. Pure Capstone . 42

8.4. TransCapstone. 46

9. Memory Consistency Model. 50

Appendix A: Debugging Instructions (Non-Normative) . 51

A.1. World Switching . 51

A.2. Exception Handling . 51

Appendix B: Instruction Listing . 53

Appendix C: Assembly Code Examples . 56

Appendix D: Abstract Binary Interface (Non-Normative) . 57

2

Contributors to this document include (in alphabetical order): Jason Zhijingcheng Yu, Mingkai Li

3

Version Information: Draft version. Refer to the commit hash.

4

1. Introduction
The Capstone project is an effort to explore the design of a new CPU instruction set architecture
that achieves multiple security goals including memory safety and isolation with one unified
hardware abstraction.

1.1. Goals
The ultimate goal of Capstone is to unify the numerous hardware abstracts that have been added as
extensions to existing architectures as afterthought mitigations to security vulnerabilities. This goal
requires a high level of flexibility and extensibility of the Capstone architecture. More specifically,
we aim to support the following in a unified manner.

Exclusive access

Software should be guaranteed exclusive access to certain memory regions if needed. This is in
spite of the existence of software traditionally entitled to higher privileges such as the OS kernel
and the hypervisor.

Revocable delegation

Software components should be able to delegate authority to other components in a revocable
manner. For example, after an untrusted library function has been granted access to a memory
region, the caller should be able to revoke this access.

Dynamically extensible hierarchy

The hierarchy of authority should be dynamically extensible, unlike traditional platforms which
follow a static hierarchy of hypervisor-kernel-user. This makes it possible to use the same set of
abstractions for memory isolation and memory sharing regardless of where a software
component lies in the hierarchy.

Safe context switching

A mechanism of context switching without trusting any other software component should be
provided. This allows for a minimal TCB if necessary in case of a highly security-critical
application.

1.2. Major Design Elements
The Capstone architecture design is based on the idea of capabilities, which are unforgeable tokens
that represent authority to perform memory accesses and control flow transfers. Capstone extends
the traditional capability model with new capability types including the following.

Linear capabilities

Linear capabilities are guaranteed not to alias with other capabilities. Operations on linear
capabilities maintain this property. For example, linear capabilities cannot be duplicated.
Instead, they can only be moved around across different registers or between registers and
memory. They can hence enable safe exclusive access to memory regions. Capabilities that do
not have this property are called non-linear capabilities.

5

Revocation capabilities

Revocation capabilities cannot be used to perform memory accesses or control flow transfers.
Instead, they convey the authority to revoke other capabilities. Each revocation capability is
derived from a linear capability and can later be used to revoke (i.e., invalidate) capability
derived from the same linear capability. This mechanism enables revocable and arbitrarily
extensible chains of delegation of authority.

Uninitialised capabilities

Uninitialised capabilities convey write-only authority to memory. They can be turned into linear
capabilities after the memory region has been “initialised”, that is, when the whole memory
region has been overwritten with fresh data. Uninitialised capabilities enable safe initialisation
of memory regions and prevent secret leakage without incurring extra performance overhead.

1.3. Capstone-RISC-V ISA Overview
While Capstone does not assume any specific modern ISA, we choose to propose a Capstone
extension to RISC-V due to its open nature and the availability of toolchains and simulators.

The Capstone-RISC-V ISA is an RV64I extension that makes the following types of changes to the
base architecture:

• Each general-purpose register is extended to 129 bits to accommodate 128-bit capabilities.

• New instructions for manipulating capabilities are added.

• New instructions for memory accesses using capabilities are added.

• New instructions for control flow transfers using capabilities are added.

• Semantics of a small number of existing instructions are changed to support capabilities.

• Semantics of interrupts and exceptions are changed to support capabilities.

1.4. Capstone-RISC-V ISA Variant
In addition to the base Capstone-RISC-V ISA, which is referred to as Pure Capstone, we propose a
variant of the ISA, called TransCapstone. While memory accesses and control flow transfers are
only possible using capabilities in Pure Capstone, TransCapstone fuses them with privilege levels
and virtual memory found in traditional architectures, which allows for a smooth transition from
existing architectures to Capstone.

In TransCapstone, the physical memory is partitioned into two disjoint regions, one exclusively for
accesses through capabilities and the other exclusively for accesses through the virtual memory.
Correspondingly, TranCapstone allows softwares to run in either of the 2 worlds, i.e., the normal
world and the secure world.

World MMU Capabilities

Normal World Yes Yes

Secure World - Yes

6

#mem-extension

• The normal world follows the traditional privilege levels, allows both capability-based accesses
and virtual memory accesses, and is therefore compatible with existing softwares.

• The secure world is limited to memory accesses through capabilities and provides the security
guarantees of Capstone.

TransCapstone provides an isolation between the 2 worlds, which prevents the secure world from
being compromised by the normal world. A world switching mechanism is added in TransCapstone
to allow a secure switching between the 2 worlds. The secure world of TransCapstone is mostly the
same as Pure Capstone, and separate descriptions are provided for the parts that are different.

1.5. Assembly Mnemonics
Each Capstone-RISC-V instruction is given a mnemonic prefixed with CS.. In contexts where it is
clear we are discussing Capstone-RISC-V instructions, we will omit the CS. prefix for brevity.

In assembly code, the list of operands to an instruction is supplied following the instruction
mnemonic, with the operands separated by commas, in the order of rd, rs1, rs2, imm for any operand
the instruction expects.

1.6. Notations
When specifying the semantics of instructions, we use the following notations to represent the type
of each operand:

I

Integer register.

C

Capability register.

S

Sign-extended immediate.

Z

Zero-extended immediate.

1.7. Bibliography
The initial design of Capstone has been discussed in the following paper:

• Capstone: A Capability-based Foundation for Trustless Secure Memory Access by Jason
Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, Prateek Saxena. In Proceedings
of the 32nd USENIX Security Symposium. Anaheim, CA, USA. August 2023.

7

#world-switch
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

2. Programming Model
The Capstone-RISC-V ISA has extended part of the machine state, including both some registers and
the memory, to enable the storage and handling of capabilities.

2.1. Capabilities

2.1.1. Width

The width of a capability is 128 bits. We represent this as CLEN = 128 and CLENBYTES = 16. Note that
this does not affect the width of a raw address, which is XLEN = 64 bits, or equivalently, XLENBYTES =
8 bytes, same as in RV64I.

2.1.2. Fields

Each capability has the following architecturally-visible fields:

Table 1. Fields in a capability

Name Range Description

valid 0..1 Whether the capability is valid:
0 = invalid, 1 = valid

type 0..6 The type of the capability: 0 =
linear, 1 = non-linear, 2 =
revocation, 3 = uninitialised, 4 =
sealed, 5 = sealed-return, 6 =
exit

cursor 0..2^XLEN-1 Not applicable when type = 2
(revocation), type = 4 (sealed).
The memory address the
capability points to (to be used
for the next memory access)

base 0..2^XLEN-1 Not applicable when type = 6
(exit). The base memory
address of the memory region
associated with the capability

end 0..2^XLEN-1 Not applicable when type = 4
(sealed), type = 5 (sealed-
return), or type = 6 (exit). The
end memory address of the
memory region associated with
the capability

8

Name Range Description

perms 0..7 Not applicable when type = 4
(sealed), type = 5 (sealed-
return) or type = 6 (exit). One-
hot encoded permissions
associated with the capability: 0
= no access, 1 = execute-only, 2 =
write-only, 3 = write-execute, 4 =
read-only, 5 = read-execute, 6 =
read-write, 7 = read-write-
execute

async 0..2 Only applicable when type = 4
(sealed) or type = 5 (sealed-
return). Whether the capability
is sealed asynchronously: 0 =
synchronously, 1 = upon
exception, 2 = upon interrupt

reg 0..31 Only applicable when type = 5
(sealed-return). The index of the
general-purpose register to
restore the capability to

The range of the perms field has a partial order <=p defined as follows:

<=p = {
 (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7),
 (1, 1), (1, 3), (1, 5), (1, 7),
 (2, 2), (2, 3), (2, 6), (2, 7),
 (3, 3), (3, 7),
 (4, 4), (4, 5), (4, 6), (4, 7),
 (5, 5), (5, 7),
 (6, 6), (6, 7),
 (7, 7)
}

We say a capability c aliases with a capability d if and only if the intersection between [c.base,
c.end) and [d.base, d.end) is non-empty.

For two revocation capabilities c and d (i.e., c.type = d.type = 2), we say c <t d if and only if

• c aliases with d

• The creation of c was earlier than the creation of d

In addition to the above fields, an implementation also needs to maintain sufficient metadata to test
the <t relation. It will be clear that for any pair of aliasing revocation capabilities, the order of their
creations is well-defined.

9

Note

The valid field is involved in revocation, where it might be changed due to a revocation
operation on a different capability. A performant implementation, therefore, may prefer not
to maintain the valid field inline with the other fields.

Implementations are free to maintain additional fields to capabilities or compress the
representation of the above fields, as long as each capability fits in CLEN bits. It is not required
to be able to represent capabilities with all combinations of field values, as long as the
following conditions are satisfied:

• For load and store instructions that move a capability between a register and memory, the
value of the capability is preserved.

• The resulting capability values of any operation are not more powerful than when the
same operation is performed on a Capstone-RISC-V implementation without compression.
More specifically, if an execution trace is valid (i.e., without exceptions) on the
compressed implementation, then it must also be valid on the uncompressed
implementation. For example, a trivial yet useless compression would be to store nothing
and always return a capability with valid = 0 (TODO: double-check this claim).

Note

For different types of capabilities, a specific subset of the fields is used. The table below
summarises the fields used for each type of capabilities.

Table 2. Fields used for each type of capabilities

Type type valid cursor base end perms async reg

Linear 0 Yes Yes Yes Yes Yes - -

Non-
linear

1 Yes Yes Yes Yes Yes - -

Revocati
on

2 Yes - Yes Yes Yes - -

Uninitial
ised

3 Yes Yes Yes Yes Yes - -

Sealed 4 Yes - Yes - - Yes -

Sealed-
return

5 Yes Yes Yes - - Yes Yes

Exit 6 Yes Yes Yes - - - -

Note

When the async field of a sealed-return capability is 0 (synchronous), some memory accesses

10

#revocation
#rev-operation
#rev-operation

are granted by this capability. The following table shows the memory accesses granted by
sealed and sealed-return capabilities in different scenarios.

Table 3. Memory accesses granted by sealed and sealed-return capabilities

Capabili
ty type

asy
nc

Read Write Exec
ute

Sealed 0 No No No

Sealed 1 No No No

Sealed-
return

0 cursor in [base + 3 * CLENBYTES,
base + 34 * CLENBYTES - size]

cursor in [base + 3 * CLENBYTES,
base + 34 * CLENBYTES - size]

No

Sealed-
return

1 No No No

In other scenarios and for other capability types without the perms field, no
read/write/execute memory accesses are granted by the capability.

2.2. Extension to General-Purpose Registers
The Capstone-RISC-V ISA extends each of the 32 general-purpose registers, so it contains either a
capability or a raw XLEN-bit integer. The type of data contained in a register is maintained and
confusion of the type is not allowed, except for x0/c0 as discussed below. In assembly code, the type
of data expected in a register operand is indicated by the alias used for the register, as summarised
in the following table.

Index XLEN-bit integer Capability

0 x0/zero c0/cnull

1 x1/ra c1/cra

2 x2/sp c2/csp

3 x3/gp c3/cgp

4 x4/tp c4/ctp

5 x5/t0 c5/ct0

6 x6/t1 c6/ct1

7 x7/t2 c7/ct2

8 x8/s0/fp c8/cs0/cfp

9 x9/s1 c9/cs1

10 x10/a0 c10/ca0

11 x11/a1 c11/ca1

12 x12/a2 c12/ca2

13 x13/a3 c13/ca3

11

Index XLEN-bit integer Capability

14 x14/a4 c14/ca4

15 x15/a5 c15/ca5

16 x16/a6 c16/ca6

17 x17/a7 c17/ca7

18 x18/s2 c18/cs2

19 x19/s3 c19/cs3

20 x20/s4 c20/cs4

21 x21/s5 c21/cs5

22 x22/s6 c22/cs6

23 x23/s7 c23/cs7

24 x24/s8 c24/cs8

25 x25/s9 c25/cs9

26 x26/s10 c26/cs10

27 x27/s11 c27/cs11

28 x28/t3 c28/ct3

29 x29/t4 c29/ct4

30 x30/t5 c30/ct5

31 x31/t6 c31/ct6

x0/c0 is a read-only register that can be used both as an integer and as a capability, depending on
the context. When used as an integer, it has the value 0. When used as a capability, it has the value {
valid = 0, type = 0, cursor = 0, base = 0, end = 0, perms = 0 }. Any attempt to write to x0/c0
will be silently ignored (no exceptions are raised).

In this document, for i = 0, 1, …, 31, we use x[i] to refer to the general-purpose register with
index i.

2.3. Extension to Other Registers

2.3.1. Program Counter

• Pure Capstone: The program counter (pc) is extended to contain a capability.

• TransCapstone: Similar to the general-purpose registers, the program counter (pc) is also
extended to contain a capability or an integer.

When pc contains a capability, some of the fields of the capability are checked before each
instruction fetch. An exception is raised when any of the following conditions are met (in priority
order):

• Instruction access fault (1)

12

◦ pc.valid is 0 (invalid).

◦ pc.type is neither 0 (linear) nor 1 (non-linear).

◦ pc.perms is not executable (i.e., 1 <=p pc.perms does not hold).

◦ pc.cursor is not in the range [pc.base, pc.end-4].

• Instruction address misaligned (0)

◦ pc.cursor is not aligned to 4.

If no exception is raised, the instruction pointed to by pc.cursor is fetched and executed. The
pc.cursor is then incremented by 4 (i.e., pc.cursor += 4).

2.4. Extension to Memory
The memory is addressed using an XLEN-bit integer at byte-level granularity. In addition to raw
integers, each CLEN-bit aligned address can also store a capability. The type of data contained in a
memory location is maintained and confusion of the type is not allowed.

In Pure Capstone, the memory can only be accessed through capabilities.

Address Space Access Method Allowed Instructions

[0, 2^XLEN) Capabilities LDD/LDW/LDH/LDB, STD/STW/STH/STB, LDC and STC

In TransCapstone, the physical memory is divided into two disjoint regions: the normal memory and
the secure memory. While the normal memory is only accessible through MMU (Memory
Management Unit), the secure memory can only be accessed through capabilities.

Memory
Region

Address Space Access
Method

Allowed Instructions

Normal
Memory

[0, SBASE) U [SEND,
2^XLEN)

MMU RV64I load/store instructions, LDCR and
STCR

Secure
Memory

[SBASE, SEND) Capabilities LDD/LDW/LDH/LDB, STD/STW/STH/STB,
LDC and STC

2.5. Added Registers
The Capstone-RISC-V ISA adds the following registers:

Table 4. Additional Registers in Capstone-RISC-V ISA

13

#load-with-cap
#store-with-cap
#load-cap
#store-cap
#riscv-load-store
#load-cap-raw
#store-cap-raw
#load-with-cap
#store-with-cap
#load-cap
#store-cap

Capstone Variant Additional Registers

Pure Capstone Mnemon
ic

CCSR
encodin
g

CSR
encodin
g

Description

ceh 0x000 - The sealed capability or PC entry for the
exception handler

cih 0x001 - The sealed capability for the interrupt
handler

epc 0x002 - The exception program counter register

cinit 0x010 - The initial capability covering the entire
address space of the memory

cis - 0x000 The interrupt status register

tval - 0x001 The exception data (trap value) register

cause - 0x002 The exception cause register

TODO: we might reuse the encoding space for some RV64I CSRs.

TransCapstone Mnemon
ic

CCSR
encodin
g

CSR
encodin
g

Description

ceh 0x000 - The sealed capability or PC entry for the
exception handler

epc 0x002 - The exception program counter register

cinit 0x010 - The initial capability covering the entire
address space of the secure memory

cwrld - - The currently executed world. 0 =
normal world, 1 = secure world

normal_pc - - The program counter for the normal
world before the secure world is entered

normal_sp - - The stack pointer for the normal world
before the secure world is entered

switch_re
g

- - The index of the general-purpose
register used when switching worlds

switch_ca
p

0x005 - The capability used to store contexts
when switching worlds asynchronously

exit_reg - - The index of the general-purpose
register for receiving the exit code when
exiting the secure world

tval - 0x001 The exception data (trap value) register

cause - 0x002 The exception cause register

14

Some of the registers only allow capability values and have special semantics related to the system-
wide machine state. They are referred to as capability control and status registers (CCSRs). Under
their respective constraints, CCSRs can be manipulated using CCSR manipulation instructions.

The manipulation constraints for each CCSR are indicated below.

Table 5. Manipulation Constraints for CCSRs

Mnemo
nic

Read Write

ceh Pure Capstone or secure world Pure Capstone or secure world

cih - Pure Capstone or secure world; the original content
must not be a capability

cinit Pure Capstone or normal world;
one-time only

-

switch_c
ap

Normal world Normal world

The manipulation constraints for each additional CSR are indicated below.

Table 6. Manipulation Constraints for Additional CSRs

Mnemonic Read Write

cis cih must not be a capability cih must not be a capability

Note

ceh and cih should be handled differently. ceh is about the functionality of a domain only. A
domain should be allowed to set ceh for itself. That also means it needs to be switched when
switching domains. cih is about the functionality of the system, which should normally only
be set once. To prevent any domain from setting cih, we require the original content of cih to
be invalid for an attempt to change it to succeed.

Note

cinit is a special CCSR that is used to initialize the system. In the initialisation phase of the
system, the cinit CCSR is set to an initial capability as shown in the table below.

Table 7. Initial Capability of cinit

Variant type cursor base end perms valid

Pure Capstone 1 (linear) 0 0 2^XLEN 4 (read-write-execute) 1 (valid)

TransCapstone 1 (linear) SBASE SBASE SEND 4 (read-write-execute) 1 (valid)

CCSR manipulation instructions can be used to read this initial capability and store it in a
general-purpose register. This operation can only be performed once. Any attempt to write

15

#ctrl-status
#ctrl-status

cinit or read it for the second time will be silently ignored.

2.6. Instruction Set
The Capstone-RISC-V instruction set is based on the RV64I instruction set. The (uncompressed)
instructions are fixed 32-bit wide, and laid out in memory in little-endian order. In the encoding
space of the RV64I instruction set, Capstone-RISC-V instructions occupies the “custom-2” subset, i.e.,
the opcode of all Capstone-RISC-V instructions is 0b1011011.

Capstone-RISC-V instruction encodings follow two basic formats: R-type and I-type, as described
below (more details are also provided in the RISC-V ISA Manual).

067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 1. R-type instruction format

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 2. I-type instruction format

R-type instructions receive up to three register operands, and I-type instructions receive up to two
register operands and a 12-bit-wide immediate operand.

16

3. Capability Manipulation Instructions
Capstone provides instructions for creating, modifying, and destroying capabilities. Note that due to
the guarantee of provenance of capabilities, those instructions are the only way to manipulate
capabilities. In particular, it is not possible to manipulate capabilities by manipulating the content
of a memory location or register using other instructions.

3.1. Cursor, Bounds, and Permissions Manipulation

3.1.1. Capability Movement

Capabilities can be moved between registers with the MOVC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001010

Figure 3. MOVC instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability

If no exception is raised: If rs1 = rd, the instruction is a no-op. Otherwise, write x[rs1] to x[rd],
and if x[rs1] is not a non-linear capability (i.e., type != 1) or an exit capability (i.e., type != 6), write
cnull to x[rs1].

3.1.2. Cursor Increment

The CINCOFFSET and CINCOFFSETIMM instructions increment the cursor of a capability by a give
amount (offset).

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001101

Figure 4. CINCOFFSET instruction format

06711121415192031

0b1011011rd (C)0b011rs1 (C)imm[11:0] (S)

Figure 5. CINCOFFSETIMM instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer (for CINCOFFSET).

• Unexpected capability type (26)

17

◦ x[rs1] does not have type = 0 (linear) or type = 1 (non-linear).

If no exception is raised: For CINCOFFSET, the offset is read from x[rs2]. For CINCOFFSETIMM, the
offset is the 12-bit sign-extended immediate field imm. If the offset is 0, the instructions are
semantically equivalent to MOVC rd, rs1. Otherwise, the instructions are equivalent to an atomic
execution of MOVC rd, rs1 followed by an increment of x[rd].cursor by the offset.

3.1.3. Cursor Setter

The cursor field of a capability can also be directly set with the SCC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)*0b0000101

Figure 6. SCC instruction format

An exception is raised if any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

• Unexpected capability type (26)

◦ x[rd] does not have type = 0 (linear) or type = 1 (non-linear).

3.1.4. Field Getter

The cursor field of a capability can also be directly set and read with the SCC and LCC instructions
respectively.

06711121415192031

0b1011011rd (I)0b001rs1 (C)imm[11:0] (Z)

Figure 7. LCC instruction format

An exception is raised if any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Illegal operand value (29)

◦ The immediate value imm is greater than 6.

◦ The immediate value imm is 0 and x[rs1] does not have type = 0 (linear), type = 1 (non-
linear), or type = 3 (uninitialised).

◦ The immediate value imm is 2 and x[rs1] has type = 6 (exit).

◦ The immediate value imm is 3 and x[rs1] has type = 4 (sealed), type = 5 (sealed-return), or
type = 6 (exit).

◦ The immediate value imm is 4 and x[rs1] has type = 4 (sealed), type = 5 (sealed-return), or

18

type = 6 (exit).

◦ The immediate value imm is 5 and x[rs1] does not have type = 4 (sealed) or type = 5 (sealed-
return).

◦ The immediate value imm is 6 and x[rs1] does not have type = 5 (sealed-return).

If no exception is raised: Depending on the immediate value imm, the instruction write different
fields of x[rs1] to x[rd] according to the following table:

imm Field read

0 cursor

1 type

2 base

3 end

4 perms

5 async

6 reg

3.1.5. Bounds Shrinking

The bounds (base and end fields) of a capability can be shrunk with the SHRINK instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)rs2 (I)0b0000001

Figure 8. SHRINK instruction format

The instruction attempts to set the bounds of the capability x[rd] to [x[rs1], x[rs2]).

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

◦ x[rs2] is not an integer.

• Illegal operand value (29)

◦ x[rd].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

◦ x[rs1] >= x[rs2].

◦ x[rs1] < x[rd].base or x[rs2] > x[rd].end.

3.1.6. Bounds Splitting

The SPLIT instruction can split a capability into two by splitting the bounds.

19

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000110

Figure 9. SPLIT instruction format

The instruction attempts to split the capability x[rs1] into two capabilities, one with bounds
[x[rs1].base, x[rs2]) and the other with bounds [x[rs2], x[rs1].end).

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is neither 0 nor 1 (neither linear nor non-linear).

• Illegal operand value (29)

◦ x[rs2] is not an integer.

◦ x[rs2] <= x[rs1].base or x[rs2] >= x[rs1].end.

If no exception is raised: Set x[rs1].end to x[rs2]. A new capability is created with base = x[rs2]
and the other fields equal to those of the original x[rs1]. The new capability is written to x[rd].

3.1.7. Permission Tightening

The TIGHTEN instruction tightens the permissions (perms field) of a capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)*0b0000010

Figure 10. TIGHTEN instruction format

The instruction attempts to set x[rd].perms to x[rs1].

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

• Unexpected capability type (26)

◦ x[rd].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• Illegal operand value (29)

◦ x[rs1] is outside the range of perms.

◦ x[rs1] <=p x[rd].perms does not hold.

20

3.2. Type Manipulation
Some instructions affect the type field of a capability.

3.2.1. Delinearisation

The DELIN instruction delinearises a linear capability.

067111214151920242531

0b1011011rd (C)0b001**0b0000011

Figure 11. DELIN instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

• Unexpected capability type (26)

◦ x[rd].type is not 0 (linear).

If no exception is raised: x[rd].type is set to 1 (non-linear).

3.2.2. Initialisation

The INIT instruction transforms an uninitialised capability into a linear capability after its
associated memory region has been fully initialised (written with new data).

067111214151920242531

0b1011011rd (C)0b001**0b0001001

Figure 12. INIT instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

• Unexpected capability type (26)

◦ x[rd].type is not 3 (uninitialised).

• Illegal operand value (29)

◦ x[rd].cursor and x[rd].end are not equal.

If no exception is raised: x[rd].type is set to 0 (linear).

3.2.3. Sealing

The SEAL instruction seals a linear capability.

21

067111214151920242531

0b1011011rd (C)0b001**0b0000111

Figure 13. SEAL instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

• Unexpected capability type (26)

◦ x[rd].type is not 0 (linear).

• Insufficient capability permissions (27)

◦ 6 <=p x[rd].perms does not hold.

• Capability out of bound (28)

◦ The size of the memory region associated with x[rd] is smaller than CLENBYTES * 34 bytes.
That is, x[rd].end - x[rd].base < CLENBYTES * 34.

If no exception is raised: x[rd].type is set to 2 (sealed), and x[rd].async is set to 0 (synchronous).

3.3. Dropping
TODO: check whether dropping is actually necessary.

The DROP instruction invalidates a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0001011

Figure 14. DROP instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

If no exception is raised: x[rs1].valid is set to 0 (invalid).

3.4. Revocation

3.4.1. Revocation Capability Creation

The MREV instruction creates a revocation capability.

22

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001000

Figure 15. MREV instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear).

If no exception is raised: A new capability is created in x[rd] with the same base, end, perms and
cursor fields as x[rs1]. The type field of the new capability is set to 2 (revocation).

3.4.2. Revocation Operation

The REVOKE instruction revokes a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0000000

Figure 16. REVOKE instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 2 (revocation).

If no exception is raised:

For all capabilities c in the system (in either a register or memory location), c.valid is set to 0
(invalid) if any of the following conditions are met:

• c.type is not 2 (revocation), c.valid is 1 (valid), and c aliases with x[rs1].

• c.type is 2 (revocation), c.valid is 1 (valid), and x[rs1] <t c.

x[rs1].type is set to 0 (linear) if any of the following conditions are met for each invalidated c:

• The type of c is non-linear (i.e., c.type != 1)

• 2 <=p c.perms does not hold

23

Otherwise, x[rs1].type is set to 3 (uninitialised), and x[rs1].cursor is set to x[rs1].base.

24

4. Memory Access Instructions
Capstone provides instructions to load from and store to memory regions using capabilities as well
as instructions to load and store capabilities.

4.1. Load/Store with Capabilities
Capstone offers a set of instructions for loading and storing integers of various sizes using
capabilities.

4.1.1. Load

The LDD, LDW, LDH, LDB instructions load an integer in the size of doubleword, word, halfword,
and bste respectively. In Capstone, a doubleword is defined as XLENBYTES bytes, a word, halfword,
and byte are defined as XLENBYTES/2, XLENBYTES/4, and XLENBYTES/8 bytes respectively.

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0010010

Figure 17. LDD instruction format

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0010100

Figure 18. LDW instruction format

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0010110

Figure 19. LDH instruction format

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0011000

Figure 20. LDB instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 5 (sealed-return), or 6 (exit).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms` does not hold.

• Capability out of bound (28)

25

◦ x[rs1].type is 0 (lienar) or 1 (non-linear) and x[rs1].cursor` is not in the range [x[rs1].base,
x[rs1].end-size], where size is the size (in bytes) of the integer being loaded.

◦ x[rs1].type is 5 (sealed-return) or 6 (exit) and x[rs1].cursor is not in the range [x[rs1].base
+ 3 * CLENBYTES, x[rs1].base + 34 * CLENBYTES - size], where size is the size (in bytes) of
the integer being loaded.

• Load address misaligned (4)

◦ x[rs1].cursor is not aligned to the size of the integer being loaded.

If no exception is raised: Load the content at the memory location [x[rs1].cursor, x[rs1].cursor
+ size) as an integer, where size is the size of the integer (i.e., XLENBYTES, XLENBYTES/2, XLENBYTES/4,
or XLENBYTES/8 bytes for LDD, LDW, LDH, and LDB respectively), to x[rd].

4.1.2. Store

The STD, STW, STH, STB instructions store an integer in the size of doubleword, word, halfword,
and byte respectively.

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0010011

Figure 21. STD instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0010101

Figure 22. STW instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0010111

Figure 23. STH instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0011001

Figure 24. STB instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0, 1, 3, 5, or 6 (linear, non-linear, uninitialized, sealed-return, or exit).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0, 1, or 3 and 2 <= p x[rs1].perms does not hold.

26

• Capability out of bound (28)

◦ x[rs1].type is 0, 1, or 3 and x[rs1].cursor is not in the range [x[rs1].base, x[rs1].end-size],
where size is the size (in bytes) of the integer being stored.

◦ x[rs1].type is 5 or 6 and x[rs1].cursor is not in the range [x[rs1].base + 34 * CLENBYTES,
x[rs1].base + 34 * CLENBYTES -size], where size is the size (in bytes) of the integer being
stored.

• Store/AMO address misaligned (6)

◦ x[rs1].cursor is not aligned to the size of the scalar value being loaded.

If no exception is raised: Store the integer in x[rs2] to the memory location [x[rs1].cursor,
x[rs1].cursor + size), where size is the size of the integer (i.e., XLENBYTES, XLENBYTES/2, XLENBYTES/4,
or XLENBYTES/8 bytes for STD, STW, STH, and STB respectively). x[rs1].cursor is set to x[rs1].cursor
+ size. The data contained in the CLEN-bit aligned memory location [cbase, cend), which alias with
memory location [cursor, cursor + size) (i.e., cbase = cursor & ~(CLENBYTES - 1) and cend = cbase
+ CLENBYTES), will be interpreted as an integer type.

4.2. Load/Store Capabilities
In Capstone, two specific instructions (i.e., LDC and LTC) are used to load and store capabilities.

4.2.1. Load Capabilities

The LDC instruction loads a capability from memory.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0010000

Figure 25. LDC instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 5 (sealed-return), or 6 (exit).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

• Capability out of bound (28)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and x[rs1].cursor is not in the range [x[rs1].base,
x[rs1].end-CLENBYTES].

◦ x[rs1].type is 5 (sealed-return) or 6 (exit) and x[rs1].cursor is not in the range [x[rs1].base
+ 3 * CLENBYTES, x[rs1].base + 34 * CLENBYTES - CLENBYTES].

27

• Load address misaligned (4)

◦ x[rs1].cursor is not aligned to CLEN bits.

• Unexpected operand type (24) (TODO)

◦ The data contained in the memory location [x[rs1].cursor, x[rs1].cursor + CLENBYTES) is
not a capability.

• Insufficient capability permissions (27)

◦ The capability being loaded is not a non-linear capability (i.e., type != 1), x[rs1].type is 0
(linear) or 1 (non-linear), and 2 <=p x[rs1].perms does not hold.

If no exception is raised: Load the capability at the memory location [x[rs1].cursor,
x[rs1].cursor + CLENBYTES) into x[rd]. If the capability being loaded is not a non-linear capability
(i.e., type != 1), the data contained in the memory location [x[rs1].cursor, x[rs1].cursor +
CLENBYTES) will be set to the content of cnull.

4.2.2. Store Capabilities

The STC instruction stores a capability to memory.

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (C)0b0010001

Figure 26. STC instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0, 1, 3, 5, or 6 (linear, non-linear, uninitialized, sealed-return, or exit).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 or 1 and 2 ⇐p x[rs1].perms does not hold.

• Capability out of bound (28)

◦ x[rs1].type is 0, 1, or 3 and x[rs1].cursor is not in the range [x[rs1].base, x[rs1].end-
CLENBYTES].

◦ x[rs1].type is 5 or 6 and x[rs1].cursor is not in the range [x[rs1].base, x[rs1].base + 34 *
CLENBYTES - CLENBYTES].

• Store/AMO address misaligned (6)

◦ x[rs1].cursor is not aligned to CLEN bits.

If no exception is raised: Store x[rs2] to the memory location [x[rs1].cursor, x[rs1].cursor +

28

CLENBYTES). x[rs1].cursor is set to x[rs1].cursor + CLENBYTES. If x[rs2] is not a non-linear capability
(i.e., type != 1), x[rs2] will be set to the content of cnull.

4.3. TransCapstone Added Instructions
In TransCapstone, besides the LDC and STC instructions, two additional instructions (i.e., LDCR and
STCR) are added to load and store capabilities from/to the normal memory using raw addresses.
These 2 instructions are only available in TransCapstone and an exception will be raised if they are
executed in Pure Capstone.

4.3.1. Load with Raw Addresses

The LDCR instruction loads a capability from the normal memory using raw addresses.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)*0b0011010

Figure 27. LDCR instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not an integer.

• Load address misaligned (4)

◦ x[rs1] is not aligned to CLEN bits.

• Load access fault (5)

◦ x[rs1] is in the range [SBASE, SEND).

• Unexpected operand type (24)

◦ The data contained in the memory location [x[rs1], x[rs1] + CLENBYTES) is not a capability.

If no exception is raised: Load the capability at the memory location [x[rs1], x[rs1] + CLENBYTES)
into rd. If the capability being loaded is a non-linear capability (i.e. type != 1) or an exit capability
(i.e., type != 6), the data contained in the memory location [x[rs1], x[rs1] + CLENBYTES) will be set
to the content of cnull.

4.3.2. Store with Raw Addresses

The STCR instruction stores a capability to the normal memory using raw addresses.

067111214151920242531

0b1011011*0b001rs1 (I)rs2 (C)0b0011011

Figure 28. STCR instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

29

◦ x[rs1] is not an integer.

◦ x[rs2] is not a capability.

• Store/AMO address misaligned (6)

◦ x[rs1] is not aligned to CLEN bits.

• Store/AMO access fault (7)

◦ x[rs1] is in the range [SBASE, SEND).

If no exception is raised: Store x[rs2] to the memory location [x[rs1], x[rs1] + CLENBYTES). If
x[rs2] is not a non-linear capability (i.e., type != 1) or an exit capability (i.e., type != 6), x[rs2] will
be set to the content of cnull.

30

5. Control Flow Instructions

5.1. Jump to Capabilities
The CJALR and CBNZ instructions allow jumping to a capability, i.e., setting the program counter to
a given capability, in a unconditional or conditional manner.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0100010

Figure 29. CJALR instruction format

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100011

Figure 30. CBNZ instruction format

An exception is raised when any of the following conditions are met:

• TransCapstone

◦ Illegal instruction (2)

▪ cwrld is 0 (normal world).

• Pure Capstone or TransCapstone

◦ Unexpected operand type (24)

▪ x[rs1] is not a capability.

◦ Unexpected capability type (26)

▪ x[rs1].type is neither 0 (linear) nor 1 (non-linear).

◦ Insufficient capability permissions (27)

▪ 1 <=p x[rs1].perms does not hold.

If no exception is raised:

• CJAL: Set the program counter (pc) to x[rs1]. Meanwhile, the existing capability in pc, with its
cursor field replaced by the address of the next instruction, is written to the register rd.

• CBNZ: If x[rs2] is zero (0), the behaviour is the same as for NOP. Otherwise, set the program
counter (pc) to x[rs1].

5.2. Domain Crossing
Domains in Capstone-RISC-V are individual software compartments that are protected by a safe
context switching mechanism, i.e., domain crossing. The mechanism is provided by the CALL and
RETURN instructions.

31

5.2.1. CALL

The CALL instruction is used to call a sealed capability, i.e., to switch to another domain.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0100000

Figure 31. CALL instruction format

An exception is raised when any of the following conditions are met:

• TransCapstone

◦ Illegal instruction (2)

▪ cwrld is 0 (normal world).

• Pure Capstone or TransCapstone

◦ Unexpected operand type (24)

▪ x[rs1] is not a capability.

◦ Invalid capability (25)

▪ x[rs1].valid is 0 (invalid).

◦ Unexpected capability type (26)

▪ x[rs1].type is not 4 (sealed).

▪ x[rs1].async is not 0 (synchronous).

If no exception is raised:

1. Load the content at the memory location [x[rs1].base, x[rs1].base + CLENBYTES) to the
program counter (pc).

2. Load the content at the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) to ceh.

3. Load the content at the memory location [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 *
CLENBYTES) to csp.

4. Store the former pc, ceh and csp values to the memory location [x[rs1].base, x[rs1].base +
CLENBYTES), [x[rs1].base + CLENBYTES, x[rs1].base + 2 * CLENBYTES) and [x[rs1].base + 2 *
CLENBYTES, x[rs1].base + 3 * CLENBYTES) respectively.

5. Set x[rs1].type to 5 (sealed-return), x[rs1].cursor to x[rs1].base, x[rs1].reg` to rd, set
x[rs1].async to 0 (synchronous), and write the resulting x[rs1] to the register cra.

5.2.2. RETURN

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100001

Figure 32. RETURN instruction format

An exception is raised when any of the following conditions are met:

32

• TransCapstone

◦ Illegal instruction (2)

▪ cwrld is 0 (normal world).

• Pure Capstone or TransCapstone

◦ Unexpected operand type (24)

▪ x[rs1] is not a capability.

▪ x[rs2] is not an integer.

◦ Invalid capability (25)

▪ x[rs1].valid is 0 (invalid).

◦ Unexpected capability type (26)

▪ x[rs1].type is not 5 (sealed-return).

If no exception is raised:

When x[rs1].async = 0 (synchronous):

1. Load the content at the memory location [x[rs1].base, x[rs1].base + CLENBYTES) to the
program counter (pc).

2. Load the content at the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) to ceh.

3. Load the content at the memory location [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 *
CLENBYTES) to csp.

4. Store the former pc with cursor replaced with x[rs2], ceh and csp values to the memory location
[x[rs1].base, x[rs1].base + CLENBYTES), [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) and [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 * CLENBYTES) respectively.

5. Set x[rs1].type to 4 (sealed), and write the capability to the register x[x[rs1].reg].

When x[rs1].async = 1 (upon exception) or 2 (upon interrupt):

1. Load the content at the memory location [x[rs1].base, x[rs1].base + CLENBYTES) to the
program counter (pc).

2. Load the content at the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) to ceh.

3. Load the content at the memory location [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 *
CLENBYTES) to csp.

4. For i = 1, 2, …, 31, load the content at the memory location [x[rs1].base + (i + 2) *
CLENBYTES, x[rs1].base + (i + 3) * CLENBYTES), to x[i] (the i-th general-purpose register).

5. Write the former value of pc, with the cursor field replaced by x[rs2], to the memory location
[x[rs1].base, x[rs1].base + CLENBYTES).

6. Store the former alue of ceh to the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2
* CLENBYTES).

33

7. Store the former value of csp to the memory location [x[rs1].base + 2 * CLENBYTES,
x[rs1].base + 3 * CLENBYTES).

8. Set the x[rs1].type to 4 (sealed). If x[rs1].async = 1, write the resulting x[rs1] to the register
ceh. Otherwise (x[rs1].async = 2), write the resulting x[rs1] to the register cih.

5.3. A World Switching Extension for TransCapstone
In TransCapstone, a pair of extra instructions, i.e., CAPENTER and CAPEXIT, is added to support
switching between the secure world and the normal world. The CAPENTER instruction causes an
entry into the secure world from the normal world, and the CAPEXIT instruction causes an exit
from the secure world into the normal world.

The CAPENTER instruction can only be used in the normal world, whereas the CAPEXIT instruction
can only be used in the secure world. In addition, the CAPEXIT instruction can only be used when
an exit capability is provided. Attempting to use those instructions in the wrong world or without
the required capability will cause an exception. The behaviours of these 2 instructions roughly
correspond to the CALL and RETURN instructions respectively.

5.3.1. CAPENTER

067111214151920242531

0b1011011rd (I)0b001rs1 (C)*0b0100100

Figure 33. CAPENTER instruction format

An exception is raised when any of the following conditions are met:

• Illegal instruction (0)

◦ cwrld is 1 (secure world).

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 4 (sealed).

If no exception is raised:

When x[rs1].async = 0 (synchronous):

1. Load the content at the memory location [x[rs1].base, x[rs1].base + CLENBYTES) to the
program counter (pc).

2. Load the content at the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) to ceh.

3. Load the content at the memory location [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 *
CLENBYTES) to csp.

34

4. Store the former value of pc and sp to normal_pc and normal_sp respectively.

5. Set x[rs1].type to 6 (exit), x[rs1].cursor to x[rs1].base, and write the resulting x[rs1] to cra.

6. Write rs1 to switch_reg.

7. Write rd to exit_reg.

8. Set cwrld to 1 (secure world).

Otherwise:

1. Load the content at the memory location [x[rs1].base, x[rs1].base + CLENBYTES) to the
program counter (pc).

2. Load the content at the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 *
CLENBYTES) to ceh.

3. Load the content at the memory location [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 *
CLENBYTES) to csp.

4. For i = 1, 2, …, 31, load the content at the memory location [x[rs1].base + (i + 2) *
CLENBYTES, x[rs1].base + (i + 3) * CLENBYTES), to x[i] (the i-th general-purpose register).

5. Store the former value of pc and sp to normal_pc and normal_sp respectively.

6. Set x[rs1].type to 5 (sealed-return), x[rs1].cursor to x[rs1].base, x[rs1].async to 0
(synchronous), and write the resulting x[rs1] to switch_cap.

7. Write rs1 to switch_reg.

8. Write rd to exit_reg.

9. Set cwrld to 1 (secure world).

Note

The rd register will be set to a value indicating the cause of exit when the CPU core exits from
the secure world synchronously or asynchronously.

5.3.2. CAPEXIT

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100101

Figure 34. CAPEXIT instruction format

An exception is raised when any of the following conditions are met:

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

35

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 6 (exit).

If no exception is raised:

1. Write the content of normal_pc and normal_sp to pc and sp respectively.

2. Write the former value of pc, with the cursor field replaced by x[rs2], to the memory location
[x[rs1].base, x[rs1].base + CLENBYTES).

3. Write the former value of ceh and csp to the memory location [x[rs1].base + CLENBYTES,
x[rs1].base + 2 * CLENBYTES) and [x[rs1].base + 2 * CLENBYTES, x[rs1].base + 3 * CLENBYTES)
respectively.

4. Set x[rs1].type to 4 (sealed), x[rs1].async to 0 (synchronous), and write the resulting x[rs1] to
x[switch_reg].

5. Set exit_reg to 0 (normal exit).

6. Set cwrld to 0 (normal world).

36

6. Control and Status Instructions
The CCSRRW instruction is used to read and write specified capability CSRs (CCSRs).

06711121415192031

0b1011011rd (C)0b100rs1 (C)imm[11:0] (Z)

Figure 35. CCSRRW instruction format

An exception is raised when any of the following conditions are met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Illegal operand value (29)

◦ The immediate value imm does not correspond to the encoding of a valid capability CSR.

If no exception is raised:

1. Read from capability CSR

◦ If the read constraint is satisfied, the content of the capability CSR specified by the
immediate value imm is written to x[rd]. If the current content of the capability CSR is neither
a non-linear capability (i.e., type != 1) nor an exit capability (i.e., type != 6), it will be set to
the content of cnull.

◦ Otherwise, x[rd] is set to the content of cnull.

2. Write to capability CSR

◦ If the write constraint is satisfied, x[rs1] is written to the capability CSR specified by the
immediate value imm. If x[rs1] is neither a non-linear capability (i.e., type != 1) nor an exit
capability (i.e., type != 6), it will be set to the content of cnull.

◦ Otherwise, the original current of the capability CSR is preserved.

37

#ccsrs-list
#ccsr-man-constr
#ccsr-man-constr

7. Adjustments to Existing Instructions
For most existing instructions in the RV64I ISA, the adjustments are straightforward. Their
behaviour is unchanged, and an “unexpected operand type (24)” exception is raised if any of the
operands (i.e., x[rs1], x[rs2] or x[rd]) is a capability. For control flow instructions and memory
access instructions, however, the behaviour is slightly changed to be capability-aware.

7.1. Control Flow Instructions
In RV64I, a set of instructions are used to control the flow of execution. These instructions include
conditional branch instructions (i.e., beq, bne, blt, bge, bltu, and bgeu), and unconditional jump
instructions (i.e., jal and jalr). In Capstone, adjustments are made to these instructions to support
capability-aware execution.

067111214151920242531

0b1100011imm[4:1|11]0b000rs1 (I)rs2 (I)imm[12|10:5]

Figure 36. beq instruction format (B-type)

067111214151920242531

0b1100011imm[4:1|11]0b001rs1 (I)rs2 (I)imm[12|10:5]

Figure 37. bne instruction format (B-type)

067111214151920242531

0b1100011imm[4:1|11]0b100rs1 (I)rs2 (I)imm[12|10:5]

Figure 38. blt instruction format (B-type)

067111214151920242531

0b1100011imm[4:1|11]0b101rs1 (I)rs2 (I)imm[12|10:5]

Figure 39. bge instruction format (B-type)

067111214151920242531

0b1100011imm[4:1|11]0b110rs1 (I)rs2 (I)imm[12|10:5]

Figure 40. bltu instruction format (B-type)

067111214151920242531

0b1100011imm[4:1|11]0b111rs1 (I)rs2 (I)imm[12|10:5]

Figure 41. bgeu instruction format (B-type)

067111231

0b1101111rd (I)imm[20|10:1|11|19:12]

Figure 42. jal instruction format (J-type)

06711121415192031

0b1100111rd (I)0b000rs1 (I)imm[11:0]

Figure 43. jalr instruction format (I-type)

38

The following adjustments are made to these instructions:

• Pure Capstone

◦ An “unexpected operand type (24)” exception is raised if x[rs1], x[rs2] or x[rd] is a
capability.

◦ pc.cursor, instead of pc itself, is changed by the instruction.

◦ If the instruction is jal or jalr, pc.cursor, which contains the address of the next instruction,
is written to x[rd].

• TransCapstone

◦ An “unexpected operand type (24)” exception is raised if x[rs1], x[rs2] or x[rd] contains a
capability.

◦ If cwrld is 1 (secure world), pc.cursor, instead of pc itself, is changed by the instruction.

◦ If cwrld is 1 (secure world) and the instruction is jal or jalr, pc.cursor (i.e., the address of
the next instruction), is written to x[rd].

7.2. Memory Access Instructions
In RV64I, memory access instructions include load instructions (i.e., lb, lh, lw, lbu, lhu, lwu, ld, and
fld), and store instructions (i.e., sb, sh, sw, sd, and fsd). As the Capstone-RISC-V ISA extends each of
the 32 general-purpose registers, instructions that take these registers as operands are also
extended. These instructions (i.e., lb, lh, lw, lbu, lhu, lwu, ld, sb, sh, sw, and sd) take an integer as a
raw address, and load or store a value from or to this address. In Capstone, adjustments are made
to these instructions to support capability-aware memory access.

06711121415192031

0000011rd (I)0b000rs1 (I)imm[11:0]

Figure 44. lb instruction format (I-type)

06711121415192031

0000011rd (I)0b001rs1 (I)imm[11:0]

Figure 45. lh instruction format (I-type)

06711121415192031

0000011rd (I)0b010rs1 (I)imm[11:0]

Figure 46. lw instruction format (I-type)

06711121415192031

0000011rd (I)0b100rs1 (I)imm[11:0]

Figure 47. lbu instruction format (I-type)

06711121415192031

0000011rd (I)0b101rs1 (I)imm[11:0]

Figure 48. lhu instruction format (I-type)

39

06711121415192031

0000011rd (I)0b110rs1 (I)imm[11:0]

Figure 49. lwu instruction format (I-type)

067111214151920242531

0100011imm[4:0]0b000rs1 (I)rs2 (I)imm[11:5]

Figure 50. sb instruction format (S-type)

067111214151920242531

0100011imm[4:0]0b001rs1 (I)rs2 (I)imm[11:5]

Figure 51. sh instruction format (S-type)

067111214151920242531

0100011imm[4:0]0b010rs1 (I)rs2 (I)imm[11:5]

Figure 52. sw instruction format (S-type)

067111214151920242531

0100011imm[4:0]0b011rs1 (I)rs2 (I)imm[11:5]

Figure 53. sd instruction format (S-type)

The following adjustments are made to these instructions:

• Pure Capstone

◦ An “illegal instruction (2)” exception is raised if any of these instructions is executed.

• TransCapstone

◦ An “illegal instruction (2)” exception is raised if any of these instructions is executed when
cwrld is 1 (secure world).

◦ An “unexpected operand type (24)” exception is raised if x[rs1], x[rs2] or x[rd] contains a
capability.

◦ Depending on whether the instruction is a load or a store, a “load access fault (5)” or
“store/AMO access fault (7)” exception is raised if the address to be accessed is within the
range (SBASE-size, SEND) (i.e. addr = x[rs1] + sext(imm) and SBASE-size < addr < SEND),
where size is the size (in bytes) of the integer to be loaded or stored.

40

8. Interrupts and Exceptions
TODO: add support for nesting

8.1. Exception and Exit Codes

Note

For Pure Capstone, there is only one place where exception codes are relevant, which is the
argument to pass to the exception handler domain. For TransCapstone, however, there are
three places where we need to consider some form of exception codes:

1. (Handleable Exception) The argument to pass to the exception handler domain.

2. (Unhandleable Exception) The value returned to the CAPENTER instruction in the user
process.

3. (Interrupt) The exception code that the OS sees.

The argument to pass to the exception handler domain will be in the register a1, and the rd
operand of CAPENTER will be the exit code the user process receives.

The exception code is what the exception handler domain receives as an argument when an
exception occurs on Pure Capstone or in TransCapstone secure world. It is an integer value that
indicates what the type of the exception is. TransCapstone also has exit codes, which are the values
returned to the CAPENTER instruction in case the exception cannot be handled in the secure world.
We define the exception code and the exit code for each type of exception below. It aligns with the
exception codes defined in RV64I, where applicable, for ease of implementation and
interoperability.

Table 8. Exception codes and exit codes for Pure Capstone and TransCapstone secure world

Exception Exception code TransCapstone exit code

Instruction address misaligned 0 1

Instruction access fault 1 1

Illegal instruction 2 1

Breakpoint 3 1

Load address misaligned 4 1

Load access fault 5 1

Store/AMO address misaligned 6 1

Store/AMO access fault 7 1

Unexpected operand type 24 1

Invalid capability 25 1

Unexpected capability type 26 1

41

Exception Exception code TransCapstone exit code

Insufficient capability permissions 27 1

Capability out of bound 28 1

Illegal operand value 29 1

Unhandleable exception 30 N/A in TransCapstone

For interrupts, the same encodings as in RV64I are used.

Note

Currently, we use the same exit code 1 for all exception types to protect the confidentiality of
the secure world execution.

8.2. Exception Data
For Pure Capstone and the secure world in TransCapstone, the exception-related data is stored in
the tval CSR, similar to RV64I. The exception handler can use the value to decide how to handle the
exception. However, such data is available only for in-domain exception handling, where the
exception handling process does not involve a domain switch. For exception handling that crosses
domain or world boundaries (i.e., when ceh is a sealed capability or when the normal world ends
up handling the exception), the exception data is not available. This is to protect the confidentiality
of domain execution. Note that this design does not stop the excepted domain from selectively
trusting a different domain with such data.

For exceptions defined in RV64I, the same data as in it is written to tval. For the added exceptions,
the following data is written to tval:

Table 9. Exception data for Pure Capstone and TransCapstone secure world

Exception Data

Unexpected operand type The instruction itself (or the lowest XLEN bits if it is wider than XLEN)

Invalid capability The instruction itself (or the lowest XLEN bits if it is wider than XLEN)

Unhandleable exception N/A

8.3. Pure Capstone
For Pure Capstone, the handling of interrupts and exceptions is relatively straightforward.
Regardless of whether the event is an interrupt or an exception, or what the type of the interrupt or
exception is, the processor core will always transfer the control flow to the corresponding handler
domain (specified in the ceh register for exceptions and the cih register for interrupts). The current
context is saved and sealed in a sealed-return capability which is then supplied to the exception
handler domain as an argument. When exception handling is complete, the exception handler
domain can use the RETURN instruction to resume the execution of the excepted domain. This
process resembles that of a CALL-RETURN pair, except that it is asynchronous, rather than

42

synchronous, to the execution of the original domain.

TODO: specify what happens if any of the involved memory accesses fails

8.3.1. Interrupt Status

The cis CSR encodes the control and status associated with interrupts. The diagram below shows its
layout.

012345615

EIPEIETIPTIESIPSIEreserved (WPRI)

Figure 54. cis CSR layout

Each pair of xIP and xIE fields describes the status of the interrupt type x. The interrupt type x is
pending if the xIP field is set to 1, and enabled if the xIE field is set to 1. Currently, three types of
interrupts are supported: external interrupts (E), timer interrupts (T), and software interrupts (S).
The definitions for those interrupt types match those in RV64I.

All the fields are read-write, but only when cih contains a capability.

Note

We can require that cih does not contain a valid sealed capability but that would be more
costly than a simple check of the type of data in cih.

8.3.2. Interrupt Delivery

The interrupt delivery process starts with a certain event typically asynchronous to the execution
of the hardware thread. The sources of such events include the external interrupt controller, the
timer, and other CPU cores, which correspond to the external, timer, and software interrupt types
(i.e., x = E, T, and S). When such an event occurs, the xIP field in the cis register is set to 1 to indicate
that the interrupt is pending.

At any point during the execution of a hardware thread, if any pair of xIP and xIE fields are both 1
and at the same time the cih register contains a capability, the interrupt is delivered to the interrupt
handler domain.

Note

In this way, the cih register acts as a global interrupt-enable flag.

8.3.3. Handling of Interrupts

The interrupt is ignored if any of the following conditions is met:

• cih is not a capability.

43

• cih.valid = 0 (invalid).

• cih.type != 4 (sealed capability).

Otherwise:

1. Load the program counter pc from memory location [cih.base, cih.base + CLENBYTES).

2. Load ceh from memory location [cih.base + CLENBYTES, cih.base + 2 * CLENBYTES].

3. Load csp from memory location [cih.base + 2 * CLENBYTES, cih.base + 3 * CLENBYTES].

4. For i = 1, 2, …, 31, load the content of x[i] from memory location [cih.base + (i + 2) *
CLENBYTES, cih.base + (i + 3) * CLENBYTES).

5. Store the original program counter pc to the memory location [cih.base, cih.base + CLENBYTES).

6. Store the original ceh to the memory location [cih.base + CLENBYTES, cih.base + 2 *
CLENBYTES).

7. Store the original csp to the memory location [cih.base + 2 * CLENBYTES, cih.base + 3 *
CLENBYTES).

8. For i = 1, 2, …, 31, store the original content of x[i] to memory location [cih.base + (i + 2)
* CLENBYTES, cih.base + (i + 3) * CLENBYTES).

9. Set cih.type to 5 (sealed-return), x[rs1].cursor to x[rs1].base, cih.reg to 0, and cih.async to 2
(upon interrupt).

10. Write cih to the register c1.

11. Write the exception code to the register x10.

12. Write cnull to the register cih.

8.3.4. Handling of Exceptions

Note

Allowing anyone to set ceh can lead to DoS (when ceh is set to invalid values). Ideally, there
should be a stack of exception handlers. Each domain can only choose to push extra
exception handlers onto the stack. The bottom one will be provided by the kernel which is
responsible for the liveness of the system. As this can be costly to implement, we limit the size
of the stack to 2 for now, with the bottom one provided by the interrupt handler domain cih.

Exceptions seem to be the dual of interrupts. Interrupt handling should be delegated bottom-
up, while exception handling should be delegated top-down.

Follow the interrupt handling procedure with exception code 26 (unhandleable exception) if
any of the following conditions is met:

• The ceh register does not contain a capability.

• The capability in ceh is invalid (valid = 0).

• The capability in ceh is not a sealed (type != 4), linear (type != 0), or non-linear capability (type

44

!= 1).

Otherwise:

If ceh.type = 4:

1. Load the program counter pc from memory location [ceh.base, ceh.base + CLENBYTES).

2. Load new ceh from memory location [ceh.base + CLENBYTES, ceh.base + 2 * CLENBYTES).

3. Load new csp from memory location [ceh.base + 2 * CLENBYTES, ceh.base + 3 * CLENBYTES).

4. For i = 1, 2, …, 31, load the content of x[i] from memory location [ceh.base + (i + 2) *
CLENBYTES, ceh.base + (i + 3) * CLENBYTES).

5. Store the original program counter pc to the memory location [ceh.base, ceh.base + CLENBYTES).

6. Store the original ceh to the memory location [ceh.base + CLENBYTES, ceh.base + 2 *
CLENBYTES).

7. Store the original csp to the memory location [ceh.base + 2 * CLENBYTES, ceh.base + 3 *
CLENBYTES).

8. For i = 1, 2, …, 31, store the original content of x[i] to memory location [ceh.base + (i + 2)
* CLENBYTES, ceh.base + (i + 3) * CLENBYTES).

9. Set the original ceh.type to 5 (sealed-return), x[rs1].cursor to x[rs1].base, ceh.reg to 0, and
ceh.async to 1 (upon exception).

10. Write the modified content of original ceh to the register c1.

11. Write the exception code to the register x10.

If ceh.type = 0 or 1:

1. Write pc to epc.

2. Write ceh to pc.

3. If ceh.type != 1 and ceh.type != 6, write cnull to ceh.

4. Write the exception code to cause

5. Write extra exception data to tval.

Note

The csp register is designed to hold data that the in-domain exception handler can utilize. As
the exception handler is in the same domain as the code that caused the exception, it is not
necessary to seal the content of csp, or otherwise prevent the excepted code from accessing it.

8.3.5. Panic

When a CPU core is unable to handle an exception, it enters a state called panic. The actual
behaviour of the CPU core in this state is implementation-defined, but must be one of the following:

• Reset.

45

• Enter an infinite loop.

• Scrub all general-purpose registers, and then load a capability that is not otherwise available
into pc, and a set of capabilities that are not otherwise available into general-purpose registers.

The aim of the constraints above is to uphold the invariants of the capability model and in turn the
security guarantees of the system.

8.4. TransCapstone
TransCapstone retains the same interrupt and exception handling mechanims for the normal world
as in RV64I.

For the secure world in TransCapstone, the handling of interrupts and exceptions is more complex,
and it becomes relevant whether the event is an interrupt or an exception.

For interrupts, in order to prevent denial-of-service attacks by the secure world, the processor core
needs to transfer the control back to the normal world safely. The interrupt will be translated to
one in the normal world that occurs at the CAPENTER instruction used to enter the secure world.
Since interrupts are typically relevant only to the management of system resources, the interrupt
should be transparent to both the secure world and the user process. In other words, the secure
world will simply resume execution from where it was interrupted after the interrupt is handled by
the normal-world OS.

For exceptions, we want to give the secure world the chance to handle them first. If the secure
world manages to handle the exception, the normal world will not be involved. The end result is
that the whole exception or its handling is not even visible to the normal world. If the secure world
fails to handle an exeption (i.e., when it would end up panicking in the case of Pure Capstone, such
as when ceh is not a valid sealed capability), however, the normal world will take over. The
exception will not be translated into an exception in the normal world, but instead indicated in the
exit code that the CAPENTER instruction in the user process receives. The user process can then
decide what to do based on the exit code (e.g., terminate the domain in the secure world).

Below we discuss the details of the handling of interrupts and exceptions generated in the secure
world.

8.4.1. Handling of Secure-World Interrupts

When an interrupt occurs in the secure world, the processor core directly saves the full context,
scrubs it, and exits to the normal world. It then generates a corresponding interrupt in the normal
world, and and follows the normal-world interrupt handling process thereafter.

If the content in switch_cap is a valid sealed capability:

1. Store the current value of the program counter (pc) to the memory location [switch_cap.base,
switch_cap.base + CLENBYTES).

2. Store the current ceh to the memory location [switch_cap.base + CLENBYTES, switch_cap.base +
2 * CLENBYTES).

3. Store the current csp to the memory location [switch_cap.base + 2 * CLENBYTES,

46

switch_cap.base + 3 * CLENBYTES).

4. For i = 1, 2, …, 31, store the content of x[i] to the memory location [switch_cap.base + (i +
2) * CLENBYTES, switch_cap.base + (i + 3) * CLENBYTES).

5. Set switch_cap.aync to 2 (upon interrupt).

6. Write the content of switch_cap to the register x[switch_reg].

7. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp respectively.

8. Scrub the other general-purpose registers.

9. Set the cwrld register to 0 (normal world).

10. Trigger an interrupt in the normal world.

Otherwise:

1. Write the content of cnull to x[switch_reg].

2. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp respectively.

3. Scrub the other general-purpose registers.

4. Set the cwrld register to 0 (normal world).

5. Trigger an interrupt in the normal world.

Note that in this case, there will be another exception in the normal world when the user process
resumes execution after the interrupt has been handled by the OS, due to the invalid switch_cap
value written to the CAPENTER operand.

8.4.2. Handling of Secure-World Exceptions

When an exception occurs, the processor core first attempts to handle the exception in the secure
world, in the similar way as in Pure Capstone. If this fails (ceh is not valid), the processor core saves
the full context if it can and exits to the normal world with a proper error code.

If the content in ceh is a valid sealed capability:

1. Load the program counter pc from memory location [ceh.base, ceh.base + CLENBYTES).

2. Load new ceh from memory location [ceh.base + CLENBYTES, ceh.base + 2 * CLENBYTES).

3. Load new csp from memory location [ceh.base + 2 * CLENBYTES, ceh.base + 3 * CLENBYTES).

4. For i = 1, 2, …, 31, load the content of x[i] from memory location [ceh.base + (i + 2) *
CLENBYTES, ceh.base + (i + 3) * CLENBYTES).

5. Store the original program counter pc to the memory location [ceh.base, ceh.base + CLENBYTES).

6. Store the original csp to the memory location [ceh.base + 2 * CLENBYTES, ceh.base + 3 *
CLENBYTES).

7. For i = 1, 2, …, 31, store the original content of x[i] to memory location [ceh.base + (i + 2)
* CLENBYTES, ceh.base + (i + 3) * CLENBYTES).

8. Set the ceh.type to 5 (sealed-return), x[rs1].cursor to x[rs1].base, and ceh.async to 1 (upon
exception).

47

9. Write the content of ceh to the register c1.

10. Write the exception code to the register x10.

Note that this is exactly the same as the handling of exceptions in Pure Capstone.

If the content is ceh is a valid executable non-linear capability or linear capability:

1. Write pc to epc.

2. Write ceh to pc.

3. If ceh.type != 1 and ceh.type != 6, write cnull to ceh.

4. Write the exception code to cause

5. Write extra exception data to tval.

Otherwise:

If the content in switch_cap is a valid sealed capability:

1. Store the current value of the program counter (pc) to the memory location [switch_cap.base,
switch_cap.base + CLENBYTES).

2. Store ceh to the memory location [switch_cap.base + CLENBYTES, switch_cap.base + 2 *
CLENBYTES).

3. Store csp to the memory location [switch_cap.base + 2 * CLENBYTES, switch_cap.base + 3 *
CLENBYTES).

4. For i = 1, 2, …, 31, store the content of the i-th general purpose to the memory location
[switch_cap.base + (i + 2) * CLENBYTES, switch_cap.base + (i + 3) * CLENBYTES).

5. Set switch_cap.async to 1 (upon exception).

6. Write the content of switch_cap to x[switch_reg].

7. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp respectively.

8. Write the exit code to exit_reg.

9. Set the cwrld register to 0 (normal world).

Otherwise:

1. Write the content of cnull to x[switch_reg].

2. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp respectively.

3. Write the exit code to exit_reg.

4. Set the cwrld register to 0 (normal world).

Note

Compare this with CAPEXIT. We require that CAPEXIT be provided with a valid sealed-return
capability rather than use the latent capability in switch_cap. This allows us to enforce
containment of domains in the secure world, so that a domain is prevented from escaping

48

#world-switch

from the secure world when such a behaviour is undesired.

49

9. Memory Consistency Model
TODO

50

Appendix A: Debugging Instructions (Non-
Normative)

A.1. World Switching
The instructions SETWORLD and ONPARTITION are related to world switching in TransCapstone.

067111214151920242531

0b1011011*0b000rs1 (I)*0b0001100

Figure 55. SETWORLD instruction format

067111214151920242531

0b1011011*0b000rs1 (I)*0b0001101

Figure 56. ONPARTITION instruction format

The instructions load their operands from the register x[rs1], which expects an integer. SETWORLD
directly sets the core to the specified world (0 for normal world and non-zero for secure world). The
program counter will also be made into a capability or an integer correspondingly while retaining
the cursor value. ONPARTITION switches on (non-zero) or off (0) the world partitioning checks in
memory.

The instructions make it easy to set up the environment for testing either Pure Capstone or
TransCapstone:

• Pure Capstone: secure world, world partitioning checks off

• TransCapstone: normal world, world partitioning checks on

A.2. Exception Handling
The instructions SETEH and ONNORMALEH affect the behaviours of interrupt and exception
handling.

067111214151920242531

0b1011011*0b000rs1 (C)*0b0001110

Figure 57. SETEH instruction format

067111214151920242531

0b1011011*0b000rs1 (I)*0b0001111

Figure 58. ONNORMALEH instruction format

The SETEH instruction sets the secure-world exception handler domain (i.e., ceh) to the specified
capability x[rs1]. The ONNORMALEH instruction checks x[rs1] and switches on (non-zero) or off (
0) normal world handling of secure-world exceptions. When this is on, an exception that occurs in
the secure world will trap to the normal world first before being handled by the secure-world
exception handler (ceh), which is the expected behaviour in TransCapstone. When it is off, the

51

exception will be directly handled by the secure-world exception handler, as is expected in Pure
Capstone.

52

Appendix B: Instruction Listing
067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 59. Instruction format: R-type

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 60. Instruction format: I-type

Table 10. Debugging instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

QUERY R 000 0000000 I - - - * *

RCUPDATE R 000 0000001 I - I - * *

ALLOC R 000 0000010 I - I - * *

REV R 000 0000011 I - - - * *

CAPCREATE R 000 0000100 - - C - * *

CAPTYPE R 000 0000101 I - C - * *

CAPNODE R 000 0000110 I - C - * *

CAPPERM R 000 0000111 I - C - * *

CAPBOUND R 000 0001000 I I C - * *

CAPPRINT R 000 0001001 I - - - * *

TAGSET R 000 0001010 I I - - * *

TAGGET R 000 0001011 I - I - * *

SETWORLD R 000 0001100 I - - - * T

ONPARTITION R 000 0001101 I - - - * T

SETEH R 000 0001110 C - - - * T

ONNORMALEH R 000 0001111 I - - - * T

Table 11. Capability manipulation instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

REVOKE R 001 0000000 C - - - * *

SHRINK R 001 0000001 I I C - * *

TIGHTEN R 001 0000010 I - C - * *

DELIN R 001 0000011 - - C - * *

LCC I 001 0000100 C - I Z * *

SCC R 001 0000101 I - C - * *

53

#debug-wrld
#debug-wrld
#debug-except
#debug-except
#rev-operation
#shrink
#tighten
#delin
#field-get
#cursor-set

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

SPLIT R 001 0000110 C I C - * *

SEAL R 001 0000111 - - C - * *

MREV R 001 0001000 C - C - * *

INIT R 001 0001001 - - C - * *

MOVC R 001 0001010 C - C - * *

DROP R 001 0001011 C - - - * *

CINCOFFSET R 001 0001100 C I C - * *

CINCOFFSETIMM I 011 - C - C S * *

Table 12. Memory access instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

LDC R 001 0010000 C - C - * *

STC R 001 0010001 C C - - * *

LDD R 001 0010010 C - I - * *

STD R 001 0010011 C I - - * *

LDW R 001 0010100 C - I - * *

STW R 001 0010101 C I - - * *

LDH R 001 0010110 C - I - * *

STH R 001 0010111 C I - - * *

LDB R 001 0011000 C - I - * *

STB R 001 0011001 C I - - * *

LDCR R 001 0011010 I - C - N T

STCR R 001 0011011 I C - - N T

Table 13. Control flow instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

CALL R 001 0100000 C - - - S *

RETURN R 001 0100001 C I - - S *

CJALR R 001 0100010 C - C - S *

CBNZ R 001 0100011 C I - - S *

CAPENTER R 001 0100100 C - I - N T

CAPEXIT R 001 0100101 C I - - S T

Table 14. Control and status instructions

54

#split
#seal
#revcap-creation
#init
#cap-mov
#drop
#cursor-inc
#cursor-inc
#load-cap
#store-cap
#load-with-cap
#store-with-cap
#load-with-cap
#store-with-cap
#load-with-cap
#store-with-cap
#load-with-cap
#store-with-cap
#load-cap-raw
#store-cap-raw
#domain-cross
#domain-cross
#jmp-cap
#jmp-cap
#world-switch
#world-switch

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

CCSRRW I 100 - C - C Z * *

Note

For instruction operands:

I

Integer register

C

Capability register

-

Not used

For immediates:

S

Sign-extended

Z

Zero-extended

-

Not used

For worlds:

N

Normal world

S

Secure world

*

Either world

For variants:

P

Pure Capstone

T

TransCapstone

*

Either variant

55

#ctrl-status

Appendix C: Assembly Code Examples
TODO

56

Appendix D: Abstract Binary Interface (Non-
Normative)
TODO

57

	The Capstone-RISC-V Instruction Set Reference
	Table of Contents
	1. Introduction
	1.1. Goals
	1.2. Major Design Elements
	1.3. Capstone-RISC-V ISA Overview
	1.4. Capstone-RISC-V ISA Variant
	1.5. Assembly Mnemonics
	1.6. Notations
	1.7. Bibliography

	2. Programming Model
	2.1. Capabilities
	2.2. Extension to General-Purpose Registers
	2.3. Extension to Other Registers
	2.4. Extension to Memory
	2.5. Added Registers
	2.6. Instruction Set

	3. Capability Manipulation Instructions
	3.1. Cursor, Bounds, and Permissions Manipulation
	3.2. Type Manipulation
	3.3. Dropping
	3.4. Revocation

	4. Memory Access Instructions
	4.1. Load/Store with Capabilities
	4.2. Load/Store Capabilities
	4.3. TransCapstone Added Instructions

	5. Control Flow Instructions
	5.1. Jump to Capabilities
	5.2. Domain Crossing
	5.3. A World Switching Extension for TransCapstone

	6. Control and Status Instructions
	7. Adjustments to Existing Instructions
	7.1. Control Flow Instructions
	7.2. Memory Access Instructions

	8. Interrupts and Exceptions
	8.1. Exception and Exit Codes
	8.2. Exception Data
	8.3. Pure Capstone
	8.4. TransCapstone

	9. Memory Consistency Model
	Appendix A: Debugging Instructions (Non-Normative)
	A.1. World Switching
	A.2. Exception Handling

	Appendix B: Instruction Listing
	Appendix C: Assembly Code Examples
	Appendix D: Abstract Binary Interface (Non-Normative)

