
The Capstone-RISC-V Academic
Version Instruction Set Reference

Table of Contents
1. Introduction. 4

1.1. Properties to Support. 4

1.2. Major Design Elements . 4

1.3. Capstone-RISC-V Academic Version ISA Overview . 5

1.4. Assembly Mnemonics . 6

1.5. Notations. 6

1.6. Bibliography. 6

2. Programming Model . 7

2.1. Capabilities . 7

2.2. Extension to General-Purpose Registers . 10

2.3. Extension to Other Registers . 11

2.4. Added Registers. 12

2.5. Extension to Memory. 13

2.6. Instruction Set . 14

2.7. System Reset . 14

3. Capability Manipulation Instructions . 16

3.1. Cursor, Bounds, and Permissions Manipulation. 16

3.2. Type Manipulation . 21

3.3. Dropping. 23

3.4. Revocation . 23

4. Memory Access Instructions . 25

4.1. Load Capabilities . 25

4.2. Store Capabilities . 26

5. Control Flow Instructions. 28

5.1. Jump to Capabilities . 28

5.2. Domain Crossing. 29

6. Control and Status Instructions . 32

7. Adjustments to Existing Instructions. 33

7.1. Memory Access Instructions . 33

7.2. Control Flow Instructions. 37

7.3. Illegal Instructions . 38

8. Interrupts and Exceptions . 39

8.1. Exception and Exit Codes . 39

8.2. Exception Data . 40

1

8.3. Pure Capstone . 41

8.4. TransCapstone . 45

9. Memory Consistency Model. 51

Appendix A: Instruction Listing . 52

A.1. Capstone Instructions . 52

A.2. Extended RV64IZicsr Memory Access Instructions . 53

Appendix B: Comparison with Other Capability-Based ISA Extensions to RISC-V 57

B.1. Commonalities . 57

B.2. Differences. 58

Bibliography . 59

Appendix C: Assembly Code Examples . 60

Appendix D: Abstract Binary Interface (Non-Normative) . 61

2

Version Information: Version 1.0

3

1. Introduction
Capstone is a novel CPU instruction set architecture (ISA) that creates a single unified architectural
abstraction for achieving multiple security goals, thus liberating software developers from the
burden of working with the distinct fundamental primitives exposed by numerous security
extensions that often do not interoperate easily.

1.1. Properties to Support
The ultimate goal of Capstone is to provide a unified architectural abstraction for multiple security
goals. This goal requires Capstone to support the following properties.

Exclusive access

Software should be guaranteed exclusive access to certain memory
regions if needed. This is in spite of the existence of software traditionally
entitled to higher privileges such as the OS kernel and the hypervisor.

Revocable delegation

Software components should be able to delegate authority to other
components in a revocable manner. For example, after an untrusted
library function has been granted access to a memory region, the caller
should be able to revoke this access.

Dynamically extensible hierarchy

The hierarchy of authority should be dynamically extensible, rather than
predefined by the architecture such as hypervisor-kernel-user found in
traditional platforms. This makes it possible to use the same set of
abstractions for memory isolation and memory sharing regardless of
where a software component lies in the hierarchy.

Safe context switching

A mechanism that protects the confidentiality and integrity of the
execution context of software during control flow transfers across
security domain boundaries, including asynchronous ones such as those
for interrupt and exception handling, should be provided.

1.2. Major Design Elements
The Capstone architecture design is based on the idea of capabilities, which are unforgeable tokens
that represent authority to perform memory accesses and control flow transfers, among other
operations. Capstone extends the traditional capability model with new capability types including

4

the following.

Linear capabilities

Linear capabilities are guaranteed not to alias with other capabilities that
both grant memory access and are in architecturally visible locations (i.e.,
their actual contents might affect the execution of the whole system).
Operations on linear capabilities maintain this property. For example,
instructions can only move, but not copy, linear capabilities between
general-purpose registers. They can hence enable safe exclusive access to
memory regions. Capabilities that do not have this property are called
non-linear capabilities.

Revocation capabilities

Revocation capabilities cannot be used to perform memory accesses or
control flow transfers. Instead, they convey the authority to revoke other
capabilities. Each revocation capability is derived from a linear capability
and can later be used to revoke (i.e., invalidate) capabilities derived from
it. This mechanism enables revocable and arbitrarily extensible chains of
delegation of authority.

Uninitialised capabilities

Uninitialised capabilities convey write-only authority to memory. They
can be turned into linear capabilities after the memory region has been
“initialised”, i.e., when the whole memory region has been overwritten
with fresh data. Uninitialised capabilities enable safe initialisation of
memory regions and prevent secret leakage without incurring extra
performance overhead.

1.3. Capstone-RISC-V Academic Version ISA Overview
While Capstone does not assume any specific modern ISA, we choose to propose a Capstone variant
to RISC-V due to its open nature and the availability of toolchains and simulators.

The Capstone-RISC-V Academic Version ISA is an RV64IZicsr variant that makes the following types
of changes to the base architecture:

• Each general-purpose register is extended to 129 bits to accommodate 128-bit capabilities.

• Part of the machine state is extended and new instructions are added to support it.

• New instructions for manipulating capabilities are added.

• New instructions for memory accesses using capabilities are added.

• New instructions for control flow transfers using capabilities are added.

5

• Semantics of some existing instructions are adjusted to support capabilities.

• Semantics of interrupts and exceptions are adjusted to support capabilities.

1.4. Assembly Mnemonics
Each Capstone-RISC-V Academic Version instruction is given a mnemonic prefixed with CS.. In
contexts where it is clear we are discussing Capstone-RISC-V Academic Version instructions, we will
omit the CS. prefix for brevity.

In assembly code, the list of operands to an instruction is supplied following the instruction
mnemonic, with the operands separated by commas, in the order of rd, rs1, rs2, imm for any operand
the instruction expects.

1.5. Notations
When specifying the semantics of instructions, we use the following notations to represent the type
of each operand:

I

Integer register.

C

Capability register.

S

Sign-extended immediate.

Z

Zero-extended immediate.

1.6. Bibliography
The initial motivation, design, evaluation, and analysis of Capstone have been discussed in the
following paper:

• Capstone: A Capability-based Foundation for Trustless Secure Memory Access by Jason
Zhijingcheng Yu, Conrad Watt, Aditya Badole, Trevor E. Carlson, Prateek Saxena. In Proceedings
of the 32nd USENIX Security Symposium. Anaheim, CA, USA. August 2023.

6

https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jason

2. Programming Model
The Capstone-RISC-V Academic Version ISA has extended part of the machine state, including both
some registers and the memory, to enable the storage and handling of capabilities.

2.1. Capabilities

2.1.1. Width

The width of a capability is 128 bits. We represent this as CLEN = 128 and CLENBYTES = 16. Note that
this does not affect the width of a raw address, which is XLEN = 64 bits, or equivalently, XLENBYTES =
8 bytes, same as in RV64IZicsr.

2.1.2. Fields

Each capability has the following architecturally-visible fields:

Table 1. Fields in a capability

Name Range Description

valid 0..1 Whether the capability is valid:
0 = invalid, 1 = valid

type 0..6 The type of the capability: 0 =
linear, 1 = non-linear, 2 =
revocation, 3 = uninitialised, 4 =
sealed, 5 = sealed-return

cursor 0..2^XLEN-1 Not applicable when type = 4
(sealed). The memory address
the capability points to (to be
used for the next memory
access)

base 0..2^XLEN-1 The base memory address of
the memory region associated
with the capability

end 0..2^XLEN-1 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). The end memory
address of the memory region
associated with the capability

7

Name Range Description

perms 0..7 Not applicable when type = 4
(sealed) or type = 5 (sealed-
return). One-hot encoded
permissions associated with the
capability: 0 = no access, 1 =
execute-only, 2 = write-only, 3 =
write-execute, 4 = read-only, 5 =
read-execute, 6 = read-write, 7 =
read-write-execute

async 0..2 Only applicable when type = 4
(sealed) or type = 5 (sealed-
return). How the capability is
sealed: 0 = synchronously, 1 =
upon exception, 2 = upon
interrupt

reg 0..31 Only applicable when type = 5
(sealed-return). The index of the
general-purpose register to
restore the capability to

The range of the perms field has a partial order <=p defined as follows:

<=p = {
 (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7),
 (1, 1), (1, 3), (1, 5), (1, 7),
 (2, 2), (2, 3), (2, 6), (2, 7),
 (3, 3), (3, 7),
 (4, 4), (4, 5), (4, 6), (4, 7),
 (5, 5), (5, 7),
 (6, 6), (6, 7),
 (7, 7)
}

We say a capability c aliases with a capability d if and only if the intersection between [c.base,
c.end) and [d.base, d.end) is non-empty.

For two revocation capabilities c and d (i.e., c.type = d.type = 2), we say c <t d if and only if

• c aliases with d

• The creation of c was earlier than the creation of d

In addition to the above fields, an implementation also needs to maintain sufficient metadata to test
the <t relation. It will be clear that for any pair of aliasing revocation capabilities, the order of their
creations is well-defined.

▼ Note: the implementation of valid field

8

The valid field is involved in revocation, where it might be changed due to a revocation
operation on a different capability. A performant implementation, therefore, may prefer
not to maintain the valid field inline with the other fields.

▼ Note: addition/compression to capability fields

Implementations are free to maintain additional fields to capabilities, or compress the
representation of the above fields, as long as each capability fits in CLEN bits.

It is not required to be able to represent capabilities with all combinations of field values in
a compressed representation, as long as the following conditions are satisfied:

1. For load and store instructions that move a capability between a register and memory,
the value of the capability is preserved.

2. The resulting capability values of any operation are not more powerful than when the
same operation is performed on a Capstone-RISC-V Academic Version implementation
without compression.

◦ More specifically, if an execution trace is valid (i.e., without exceptions) on the
compressed implementation, then it must also be valid on the uncompressed
implementation. For example, a trivial yet useless compression would be to store
nothing and always return a capability with valid = 0.

For different types of capabilities, a specific subset of the fields is used. The table below summarises
the fields used for each type of capabilities.

Table 2. Fields used for each type of capabilities

Type type valid cursor base end perms async reg

Linear 0 Yes Yes Yes Yes Yes - -

Non-
linear

1 Yes Yes Yes Yes Yes - -

Revocatio
n

2 Yes Yes Yes Yes Yes - -

Uninitiali
sed

3 Yes Yes Yes Yes Yes - -

Sealed 4 Yes - Yes - - Yes -

Sealed-
return

5 Yes Yes Yes - - Yes Yes

When the async field of a sealed-return capability is 0 (synchronous), some memory accesses are
granted by this capability. The following table shows the memory accesses granted in such
scenarios, where size is the size of the memory access in bytes.

Table 3. Memory accesses granted by sealed-return

9

Capabilit
y type

asy
nc

Read Write Exec
ute

Sealed-
return

0 cursor in [base + 3 * CLENBYTES,
base + 33 * CLENBYTES - size]

cursor in [base + 3 * CLENBYTES,
base + 33 * CLENBYTES - size]

No

In other scenarios and for other capability types without the perms field, no read/write/execute
memory accesses are granted by the capability.

The following figure shows the overview of different types of capabilities in Capstone-RISC-V
Academic Version, and the operations that change the type of a capability.

Figure 1. Overview of different types of capabilities in Capstone-RISC-V Academic Version

2.2. Extension to General-Purpose Registers
The Capstone-RISC-V Academic Version ISA extends each of the 32 general-purpose registers, so it
contains either a capability or a raw XLEN-bit integer. The type of data contained in a register is
maintained and confusion of the type is not allowed, except for x0/c0 as discussed below. In
assembly code, the type of data expected in a register operand is indicated by the alias used for the
register, as summarised in the following table.

Index XLEN-bit integer Capability

0 x0/zero c0/cnull

1 x1/ra c1/cra

2 x2/sp c2/csp

3 x3/gp c3/cgp

4 x4/tp c4/ctp

5 x5/t0 c5/ct0

6 x6/t1 c6/ct1

7 x7/t2 c7/ct2

10

Index XLEN-bit integer Capability

8 x8/s0/fp c8/cs0/cfp

9 x9/s1 c9/cs1

10 x10/a0 c10/ca0

11 x11/a1 c11/ca1

12 x12/a2 c12/ca2

13 x13/a3 c13/ca3

14 x14/a4 c14/ca4

15 x15/a5 c15/ca5

16 x16/a6 c16/ca6

17 x17/a7 c17/ca7

18 x18/s2 c18/cs2

19 x19/s3 c19/cs3

20 x20/s4 c20/cs4

21 x21/s5 c21/cs5

22 x22/s6 c22/cs6

23 x23/s7 c23/cs7

24 x24/s8 c24/cs8

25 x25/s9 c25/cs9

26 x26/s10 c26/cs10

27 x27/s11 c27/cs11

28 x28/t3 c28/ct3

29 x29/t4 c29/ct4

30 x30/t5 c30/ct5

31 x31/t6 c31/ct6

x0/c0 is a read-only register that can be used both as an integer and as a capability, depending on
the context. When used as an integer, it has the value 0. When used as a capability, it has the value {
valid = 0, type = 0, cursor = 0, base = 0, end = 0, perms = 0 }. Any attempt to write to x0/c0
will be silently ignored (no exceptions are raised).

In this document, for i = 0, 1, …, 31, we use x[i] to refer to the general-purpose register with
index i.

2.3. Extension to Other Registers

11

2.3.1. Program Counter

The program counter (pc) is changed to contain a capability only.

During the instruction fetch stage, an exception is raised when any of the following
conditions is met:

• Instruction access fault (1)

◦ pc.valid is 0 (invalid).

◦ pc.type is neither 0 (linear) nor 1 (non-linear).

◦ pc.perms is not executable (i.e., 1 <=p pc.perms does not hold).

◦ pc.cursor is not in the range [pc.base, pc.end - 4].

• Instruction address misaligned (0)

◦ pc.cursor is not aligned to 4.

If no exception is raised:

1. The instruction pointed to by pc.cursor is fetched and executed.

2. Set pc.cursor to pc.cursor + 4 at the end of the instruction.

2.4. Added Registers
The Capstone-RISC-V Academic Version ISA adds the following registers.

Table 4. Additional Registers in Capstone-RISC-V Academic Version ISA

Mnemon
ic

CCSR
encoding

CSR
encoding

Description

ceh 0x000 - The sealed capability or PC entry for the exception handler

cih 0x001 - The sealed capability for the interrupt handler

cinit 0x002 - The initial capability covering the entire address space of
the memory

epc 0x003 - The exception program counter register

cis - 0x800 The interrupt status register

tval - 0x801 The exception data (trap value) register

cause - 0x802 The exception cause register

Some of the registers only allow capability values and have special semantics related to the system-
wide machine state. They are referred to as capability control and status registers (CCSRs). Under
their respective constraints, CCSRs can be manipulated using control and status instructions.

12

The manipulation constraints for each CCSR are indicated below.

Table 5. Manipulation Constraints for CCSRs

Mnemonic Read Write

ceh No constraint No constraint

cih - The original content must not be a capability

cinit Oone-time only -

epc No constraint No constraint

Some of the registers are added as control and status registers (CSRs). These registers are
manipulated by the same instructions that manipulate CSRs as in RV64IZicsr. When the
manipulation constraints of these additional CSRs are not satisfied, the behaviour of these
instructions follows the RV64IZicsr convention for other CSRs.

The manipulation constraints for each additional CSR are indicated below.

Table 6. Manipulation Constraints for Additional CSRs

Mnemonic Read Write

cis No constraint No constraint

tval No constraint No constraint

cause No constraint No constraint

▼ Note: ceh and cih

ceh and cih should be handled differently.

ceh is about the functionality of a domain only. A domain should be allowed to set ceh for
itself. That also means it needs to be switched when switching domains.

cih is about the functionality of the system, which should normally only be set once. To
prevent any domain from setting cih, we require the original content of cih to be invalid
for an attempt to change it to succeed.

▼ Note: cinit

cinit is a CCSR that is used to bootstrap capabilities after a system reset. control and status
instructions can be used to read the initial capability in cinit and write it to a general-
purpose register. This operation can only be performed once after each reset. Any attempt
to write cinit will be silently ignored, and any attempt to read it after the first time will
return the content of cnull.

2.5. Extension to Memory
The memory is addressed using an XLEN-bit integer at byte-level granularity.

13

In addition to raw integers, each CLEN-bit aligned address can also store a capability. The type of
data contained in a memory location is maintained and confusion of the type is not allowed. The
physical memory can only be accessed through capabilities.

Address Space Access Method

[0, 2^XLEN) Capabilities

2.6. Instruction Set
The Capstone-RISC-V Academic Version instruction set is based on the RV64IZicsr instruction set.
The (uncompressed) instructions are fixed 32-bit wide, and laid out in memory in little-endian
order. In the encoding space of the RV64IZicsr instruction set, Capstone-RISC-V Academic Version
instructions occupies the “custom-2” subset, i.e., the opcode of all Capstone-RISC-V Academic
Version instructions is 0b1011011.

Capstone-RISC-V Academic Version instruction encodings follow three basic formats: R-type, I-type
and S-type, as described below (more details are also provided in the RISC-V ISA Manual).

067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 2. R-type instruction format

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 3. I-type instruction format

067111214151920242531

0b1011011imm[4:0]func3rs1rs2imm[11:5]

Figure 4. S-type instruction format

R-type instructions receive up to three register operands, and I-type/S-type instructions receive up
to two register operands and a 12-bit-wide immediate operand.

Capstone-RISC-V Academic Version also uses a register operand of R-type as an immediate operand
in some instructions, which is called register-immediate (RI) type for convenience in this document.

067111214151920242531

0b1011011rdfunc3rs1imm[4:0]func7

Figure 5. RI-type instruction format

The so-called RI-type instructions are actually derivatives of R-type instructions. They receive up to
two register operands and a 5-bit-wide immediate operand.

2.7. System Reset
Upon reset, the system state must conform to the following specifications.

14

https://github.com/riscv/riscv-isa-manual

• Each general-purpose register either contains an integer, or a capability with valid = 0
(invalid).

• No addressable memory location can contain a capability.

• ceh, cih, and epc contain either integers or capabilities with valid = 0 (invalid).

• cis = 0.

• cinit = { valid = 1, type = 0, cursor = INIT_DATA_BASE, base = INIT_DATA_BASE, end =
INIT_DATA_END, perms = 7 }, and pc = { valid = 1, type = 0, cursor = INIT_CODE_BASE,
base = INIT_CODE_BASE, end = INIT_CODE_END, perms = 7 }, where INIT_DATA_BASE,
INIT_DATA_END, INIT_CODE_BASE, and INIT_CODE_END are implementation-defined, and
[INIT_CODE_BASE, INIT_CODE_END) does not overlap with [INIT_DATA_BASE, INIT_DATA_END).

15

3. Capability Manipulation Instructions
Capstone provides instructions for creating, modifying, and destroying capabilities. Note that due to
the guarantee of provenance of capabilities, those instructions are the only way to manipulate
capabilities. In particular, it is not possible to manipulate capabilities by manipulating the content
of a memory location or register using other instructions.

3.1. Cursor, Bounds, and Permissions Manipulation

3.1.1. Capability Movement

Capabilities can be moved between registers with the MOVC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001010

Figure 6. MOVC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability

If no exception is raised:

• If rs1 = rd, the instruction is a no-op.

• Otherwise

1. Write x[rs1] to x[rd]

2. If x[rs1] is not a non-linear capability (i.e., type != 1), write cnull to x[rs1].

3.1.2. Cursor Increment

The CINCOFFSET and CINCOFFSETIMM instructions increment the cursor of a capability by a given
amount (offset).

CINCOFFSET

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001100

Figure 7. CINCOFFSET instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

16

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. Set val to x[rs2].

2. MOVC rd, rs1.

3. Set x[rd].cursor to x[rd].cursor + val.

CINCOFFSETIMM

06711121415192031

0b1011011rd (C)0b010rs1 (C)imm[11:0] (S)

Figure 8. CINCOFFSETIMM instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. MOVC rd, rs1.

2. Set x[rd].cursor to x[rd].cursor + imm.

3.1.3. Cursor Setter

The cursor field of a capability can also be directly set with the SCC instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000101

Figure 9. SCC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

17

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rs1] has type = 3 (uninitialised) or type = 4 (sealed).

If no exception is raised:

1. Set val to x[rs2].

2. MOVC rd, rs1.

3. Set x[rd].cursor to val.

3.1.4. Field Query

The LCC instruction is used to read a field from a capability.

067111214151920242531

0b1011011rd (I)0b001rs1 (C)imm[4:0] (Z)0b0000100

Figure 10. LCC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ imm = 2 and x[rs1] has type = 4 (sealed).

◦ imm = 4 and x[rs1] has type = 4 (sealed) or type = 5 (sealed-return).

◦ imm = 5 and x[rs1] has type = 4 (sealed) or type = 5 (sealed-return).

◦ imm = 6 and x[rs1] does not have type = 4 (sealed) or type = 5 (sealed-return).

◦ imm = 7 and x[rs1] does not have type = 5 (sealed-return).

If no exception is raised:

• If imm > 7, write zero to x[rd]

• Otherwise, write field to x[rd] according to the LCC multiplexing table.

Table 7. LCC multiplexing table

imm field

0 x[rs1].valid

18

imm field

1 x[rs1].type

2 x[rs1].cursor

3 x[rs1].base

4 x[rs1].end

5 x[rs1].perms

6 x[rs1].async

7 x[rs1].reg

3.1.5. Bounds Shrinking

The bounds (base and end fields) of a capability can be shrunk with the SHRINK instruction.

067111214151920242531

0b1011011rd (C)0b001rs1 (I)rs2 (I)0b0000001

Figure 11. SHRINK instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rd].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• Illegal operand value (29)

◦ x[rs1] >= x[rs2].

◦ x[rs1] < x[rd].base or x[rs2] > x[rd].end.

If no exception is raised:

1. Set x[rd].base to x[rs1] and x[rd].end to x[rs2].

2. If x[rd].cursor < x[rs1], set x[rd].cursor to x[rs1].

3. If x[rd].cursor > x[rs2], set x[rd].cursor to x[rs2].

3.1.6. Bounds Splitting

The SPLIT instruction can split a capability into two by splitting the bounds. It attempts to split the
capability x[rs1] into two capabilities, one with bounds [x[rs1].base, x[rs2]) and the other with
bounds [x[rs2], x[rs1].end).

19

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0000110

Figure 12. SPLIT instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is neither 0 (linear) nor 1 (non-linear).

• Illegal operand value (29)

◦ x[rs2] <= x[rs1].base or x[rs2] >= x[rs1].end.

If no exception is raised:

1. If rs1 = rd, the instruction is a no-op.

2. Set val to x[rs2].

3. Write x[rs1] to x[rd].

4. Set x[rs1].end to val, x[rs1].cursor to x[rs1].base.

5. Set x[rd].base to val, x[rd].cursor to val.

3.1.7. Permission Tightening

The TIGHTEN instruction tightens the permissions (perms field) of a capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)imm[4:0] (Z)0b0000010

Figure 13. TIGHTEN instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ x[rs1].type is not 0, 1, or 3 (linear, non-linear, or uninitialised).

• Illegal operand value (29)

20

◦ imm <= 7, and imm <=p x[rs1].perms does not hold.

If no exception is raised:

1. MOVC rd, rs1.

2. If imm > 7, set x[rs1].perms to 0. Otherwise, set x[rs1].perms to imm.

3.2. Type Manipulation
Some instructions can affect the type field of a capability directly. In general, the type field cannot
be set arbitrarily. Instead, it is changed as the side effect of certain semantically significant
operations.

3.2.1. Delinearisation

The DELIN instruction delinearises a linear capability.

067111214151920242531

0b1011011rd (C)0b001**0b0000011

Figure 14. DELIN instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rd] is not a capability.

• Unexpected capability type (26)

◦ x[rd].type is not 0 (linear).

If no exception is raised:

• Set x[rd].type to 1 (non-linear).

3.2.2. Initialisation

The INIT instruction transforms an uninitialised capability into a linear capability after its
associated memory region has been fully initialised (written with new data).

067111214151920242531

0b1011011rd (C)0b001rs1 (C)rs2 (I)0b0001001

Figure 15. INIT instruction format

An exception is raised when any of the following conditions is met:

21

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Unexpected capability type (26)

◦ x[rs1].type is not 3 (uninitialised).

• Illegal operand value (29)

◦ x[rs1].cursor and x[rs1].end are not equal.

If no exception is raised:

1. Set val to x[rs2].

2. MOVC rd, rs1.

3. Set x[rd].type to 0 (linear), and x[rd].cursor to x[rd].base + val.

3.2.3. Sealing

The SEAL instruction seals a linear capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0000111

Figure 16. SEAL instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear).

• Insufficient capability permissions (27)

◦ 6 <=p x[rs1].perms does not hold.

• Illegal operand value (29)

◦ The size of the memory region associated with x[rs1] is smaller than CLENBYTES * 33
bytes (i.e., x[rs1].end - x[rs1].base < CLENBYTES * 33).

◦ x[rs1].base is not aligned to CLENBYTES bytes.

If no exception is raised:

1. MOVC rd, rs1.

22

2. Set x[rd].type to 2 (sealed), and x[rd].async to 0 (synchronous).

3.3. Dropping
The DROP instruction invalidates a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0001011

Figure 17. DROP instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

If no exception is raised:

1. If x[rs1].valid is 0 (invalid), the instruction is a no-op.

2. Otherwise, set x[rs1].valid to 0 (invalid).

3.4. Revocation

3.4.1. Revocation Capability Creation

The MREV instruction creates a revocation capability.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0001000

Figure 18. MREV instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear).

If no exception is raised:

23

1. Write x[rs1] to x[rd].

2. Set x[rd].type to 2 (revocation).

3.4.2. Revocation Operation

The REVOKE instruction revokes a capability.

067111214151920242531

0b1011011*0b001rs1 (C)*0b0000000

Figure 19. REVOKE instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 2 (revocation).

If no exception is raised:

1. For each capability c in the system (in either a register or memory location), c.valid is set
to 0 (invalid) if any of the following conditions are met:

◦ c.type is not 2 (revocation), c.valid is 1 (valid), and c aliases with x[rs1].

◦ c.type is 2 (revocation), c.valid is 1 (valid), and x[rs1] <t c.

2. x[rs1].type is set to 0 (linear) if at least one of the following conditions are met:

◦ For every invalidated capability c, the type of c is non-linear (i.e., c.type is 1).

◦ 2 <=p x[rs1].perms does not hold.

3. Otherwise, set x[rs1].type to 3 (uninitialised), and x[rs1].cursor to x[rs1].base.

24

4. Memory Access Instructions
Capstone provides instructions to load and store capabilities from/to memory regions.

4.1. Load Capabilities
The LDC instruction loads a capability from the memory.

06711121415192031

0b1011011rd (C)0b011rs1 (C)imm[11:0] (S)

Figure 20. LDC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear) or 5 (sealed-return).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

• Capability out of bound (28)

◦ x[rs1].type is 0 (linear) or 1 (non-linear), and x[rs1].cursor + imm is not in the range
[x[rs1].base, x[rs1].end - CLENBYTES].

◦ x[rs1].type is 5 (sealed-return), and x[rs1].cursor + imm is not in the range
[x[rs1].base + 3 * CLENBYTES, x[rs1].base + 33 * CLENBYTES - CLENBYTES].

• Load address misaligned (4)

◦ x[rs1].cursor + imm is not aligned to CLENBYTES bytes.

• Load access fault (5)

◦ The data contained in the memory location [x[rs1].cursor + imm, x[rs1].cursor +
imm + CLENBYTES) is not a capability.

• Insufficient capability permissions (27)

◦ The capability being loaded is not a non-linear capability (i.e., type != 1), x[rs1].type
is 0 (linear) or 1 (non-linear), and 2 <=p x[rs1].perms does not hold.

If no exception is raised:

25

1. Set cap to x[rs1].

2. Load the capability at the memory location cap.cursor + imm, cap.cursor + imm +
CLENBYTES) into x[rd].

3. If x[rd].type is not 1 (non-linear), write cnull to the memory location [cap.cursor + imm,
cap.cursor + imm + CLENBYTES).

4.2. Store Capabilities
The STC instruction stores a capability to the memory.

067111214151920242531

0b1011011imm[4:0] (S)0b100rs1 (C)rs2 (C)imm[11:5] (S)

Figure 21. STC instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 3 (uninitialised) or 5 (sealed-return).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 or 1, and 2 <=p x[rs1].perms does not hold.

• Illegal operand value (29)

◦ x[rs1].type is 3 (uninitialised) and imm is not 0.

• Capability out of bound (28)

◦ x[rs1].type is 0, 1, or 3, and x[rs1].cursor + imm is not in the range [x[rs1].base,
x[rs1].end - CLENBYTES].

◦ x[rs1].type is 5 or 6, and x[rs1].cursor + imm is not in the range [x[rs1].base + 3 *
CLENBYTES, x[rs1].base + 33 * CLENBYTES - CLENBYTES].

• Store/AMO address misaligned (6)

◦ x[rs1].cursor + imm is not aligned to CLENBYTES bytes.

If no exception is raised:

26

1. Store x[rs2] to the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
CLENBYTES).

2. If x[rs1].type is 3 (uninitialised), set x[rs1].cursor to x[rs1].cursor + CLENBYTES.

3. If x[rs2].type is not 1 (non-linear), write cnull to x[rs2].

27

5. Control Flow Instructions

5.1. Jump to Capabilities
The CJALR and CBNZ instructions allow jumping to a capability, i.e., setting the program counter to
a given capability, in a unconditional or conditional manner.

5.1.1. CJALR

06711121415192031

0b1011011rd (C)0b101rs1 (C)imm[11:0] (S)

Figure 22. CJALR instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

If no exception is raised:

1. Set cap to x[rs1].

2. Set pc.cursor to pc.cursor + 4, write pc to x[rd].

3. Set cap.cursor to cap.cursor + imm, write cap to pc.

4. If rs1 != rd and x[rs1].type != 1, write cnull to x[rs1].

5.1.2. CBNZ

06711121415192031

0b1011011rd (C)0b110rs1 (I)imm[11:0] (S)

Figure 23. CBNZ instruction format

An exception is raised when any of the following conditions is met:

• Illegal instruction (2)

◦ cwrld is 0 (normal world).

• Unexpected operand type (24)

◦ x[rd] is not a capability.

◦ x[rs1] is not an integer.

If no exception is raised:

28

• If x[rs1] is 0, the instruction is a no-op.

• Otherwise

1. Write x[rd] to pc.

2. Set pc.cursor to pc.cursor + imm.

3. If x[rd].type != 1, write cnull to x[rd].

5.2. Domain Crossing
Domains in Capstone-RISC-V Academic Version are individual software compartments that are
protected by a safe context switching mechanism, i.e., domain crossing. The mechanism is provided
by the CALL and RETURN instructions.

5.2.1. CALL

The CALL instruction is used to call a sealed capability, i.e., to switch to another domain.

067111214151920242531

0b1011011rd (C)0b001rs1 (C)*0b0100000

Figure 24. CALL instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 4 (sealed).

◦ x[rs1].async is not 0 (synchronous).

If no exception is raised:

1. MOVC cra, rs1.

2. Swap the program counter (pc) with the content at the memory location [cra.base,
cra.base + CLENBYTES).

3. Swap ceh with the content at the memory location [cra.base + CLENBYTES, cra.base + 2 *
CLENBYTES).

4. Swap csp with the content at the memory location [cra.base + 2 * CLENBYTES, cra.base + 3
* CLENBYTES).

29

5. Set cra.type to 5 (sealed-return), cra.cursor to cra.base, cra.reg to rd, and cra.async to 0
(synchronous).

5.2.2. RETURN

067111214151920242531

0b1011011*0b001rs1 (C)rs2 (I)0b0100001

Figure 25. RETURN instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ rs1 != 0 and x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ rs1 != 0 and x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ rs1 != 0 and x[rs1].type is not 5 (sealed-return).

If no exception is raised:

If rs1 = 0:

1. Set pc.cursor to x[rs2].

2. Write pc to ceh, and epc to pc.

3. If epc.type != 1, write cnull to epc.

Otherwise:

When x[rs1].async = 0 (synchronous):

1. Write x[rs1] to cap and cnull to x[rs1].

2. Set pc.cursor to x[rs2], and swap the program counter (pc) with the content at the memory
location [cap.base, cap.base + CLENBYTES).

3. Swap ceh with the content at the memory location [cap.base + CLENBYTES, cap.base + 2 *
CLENBYTES).

4. Swap csp with the content at the memory location [cap.base + 2 * CLENBYTES, cap.base + 3
* CLENBYTES).

5. Write cap to x[cap.reg] and set x[cap.reg].type to 4 (sealed).

30

When x[rs1].async = 1 (upon exception):

1. Set pc.cursor to x[rs2], and swap the program counter (pc) with the content at the memory
location [x[rs1].base, x[rs1].base + CLENBYTES).

2. Store ceh to the memory location [x[rs1].base + CLENBYTES, x[rs1].base + 2 * CLENBYTES).

3. Set x[rs1].type to 4 (sealed), x[rs1].async to 0 (synchronous).

4. Write the resulting x[rs1] to ceh, and cnull to x[rs1].

5. For i = 1, 2, …, 31, swap x[i] with the content at the memory location [ceh.base + (i +
1) * CLENBYTES, ceh.base + (i + 2) * CLENBYTES).

When x[rs1].async = 2 (upon interrupt):

1. Set pc.cursor to x[rs2], and swap the program counter (pc) with the content at the memory
location [x[rs1].base, x[rs1].base + CLENBYTES).

2. Swap ceh with the content at the memory location [x[rs1].base + CLENBYTES, x[rs1].base +
2 * CLENBYTES).

3. Set x[rs1].type to 4 (sealed), x[rs1].async to 0 (synchronous).

4. Write the resulting x[rs1] to cih, and cnull to x[rs1].

5. For i = 1, 2, …, 31, swap x[i] with the content at the memory location [cih.base + (i +
1) * CLENBYTES, cih.base + (i + 2) * CLENBYTES).

31

6. Control and Status Instructions
The CCSRRW instruction is used to read and write specified capability control and status registers
(CCSRs).

06711121415192031

0b1011011rd (C)0b111rs1 (C)imm[11:0] (Z)

Figure 26. CCSRRW instruction format

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

• Illegal operand value (29)

◦ imm does not correspond to the encoding of a valid CCSR.

If no exception is raised:

1. If the read constraint is satisfied

◦ The content of the CCSR specified by imm is written to x[rd].

◦ If x[rd].type is not 1 (non-linear), write cnull to the CCSR specified by imm.

2. Otherwise, write cnull to x[rd].

3. If the write constraint is satisfied

◦ Write x[rs1] to the CCSR specified by imm.

◦ If x[rs1].type is not 1 (non-linear), write cnull to x[rs1].

4. Otherwise, preserve the current content of the CCSR specified by imm.

32

7. Adjustments to Existing Instructions
For most of the existing instructions in RV64IZicsr, their behaviour is unmodified. The cursor field
(if type != 4) or base field (if type = 4) of the capability is used if a register containing a capability is
used as an operand.

The following instructions in RV64IZicsr are adjusted in Capstone:

• For memory access instructions, they are adjusted to use capabilities as addresses for
memory access.

• For control flow instructions, they are adjusted for the case where the program counter is
a capability.

• Some instructions in RV64IZicsr become illegal instructions in Capstone-RISC-V Academic
Version ISA.

7.1. Memory Access Instructions
In RV64IZicsr, memory access instructions include load instructions (i.e., lb, lh, ld, lw, lbu, lhu, lwu),
and store instructions (i.e., sb, sh, sw, sd). These instructions take an integer as a raw address, and
load or store a value from/to this address. In Capstone, these instructions are extended to take a
capability as an address.

7.1.1. Load Instructions

In Capstone-RISC-V Academic Version ISA, RV64IZicsr load instructions are modified to load
integers of different sizes using capabilities.

▼ Note: size of load instructions

The size used in this sections is the size (in bytes) of the integer being loaded.

Mnemonic size

lb 1

lbu 1

lh 2

lhu 2

lw 4

lwu 4

ld 8

An exception is raised when any of the following conditions is met:

• Unexpected operand type (24)

33

◦ x[rs1] is not a capability.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear) or 5 (sealed-return).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 (linear) or 1 (non-linear) and 4 <=p x[rs1].perms does not hold.

• Capability out of bound (28)

◦ x[rs1].type is 0 (linear) or 1 (non-linear), and x[rs1].cursor + imm is not in the range
[x[rs1].base, x[rs1].end - size].

◦ x[rs1].type is 5 (sealed-return), and x[rs1].cursor + imm is not in the range
[x[rs1].base + 3 * CLENBYTES, x[rs1].base + 33 * CLENBYTES - size].

• Load address misaligned (4)

◦ x[rs1].cursor + imm is not aligned to size bytes.

06711121415192031

0000011rd (I)0b000rs1 (C)imm[11:0] (S)

Figure 27. lb instruction format

06711121415192031

0000011rd (I)0b001rs1 (C)imm[11:0] (S)

Figure 28. lh instruction format

06711121415192031

0000011rd (I)0b010rs1 (C)imm[11:0] (S)

Figure 29. lw instruction format

06711121415192031

0000011rd (I)0b011rs1 (C)imm[11:0] (S)

Figure 30. ld instruction format

If no exception is raised:

• Load the content at the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
size) as a signed integer to x[rd].

06711121415192031

0000011rd (I)0b100rs1 (C)imm[11:0] (S)

Figure 31. lbu instruction format

34

06711121415192031

0000011rd (I)0b101rs1 (C)imm[11:0] (S)

Figure 32. lhu instruction format

06711121415192031

0000011rd (I)0b110rs1 (C)imm[11:0] (S)

Figure 33. lwu instruction format

If no exception is raised:

• Load the content at the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm +
size) as an unsigned integer to x[rd].

7.1.2. Store Instructions

▼ Note: size of store instructions

The size used in this sections is the size (in bytes) of the integer being stored.

Mnemonic size

sb 1

sh 2

sw 4

sd 8

067111214151920242531

0100011imm[4:0] (S)0b000rs1 (C)rs2 (I)imm[11:5] (S)

Figure 34. sb instruction format

067111214151920242531

0100011imm[4:0] (S)0b001rs1 (C)rs2 (I)imm[11:5] (S)

Figure 35. sh instruction format

067111214151920242531

0100011imm[4:0] (S)0b010rs1 (C)rs2 (I)imm[11:5] (S)

Figure 36. sw instruction format

067111214151920242531

0100011imm[4:0]0b011rs1 (C)rs2 (I)imm[11:5]

Figure 37. sd instruction format

An exception is raised when any of the following conditions is met:

35

• Unexpected operand type (24)

◦ x[rs1] is not a capability.

◦ x[rs2] is not an integer.

• Invalid capability (25)

◦ x[rs1].valid is 0 (invalid).

• Unexpected capability type (26)

◦ x[rs1].type is not 0 (linear), 1 (non-linear), 3 (uninitialised) or 5 (sealed-return).

◦ x[rs1].type is 5 (sealed-return) and x[rs1].async is not 0 (synchronous).

• Insufficient capability permissions (27)

◦ x[rs1].type is 0 or 1, and 2 <=p x[rs1].perms does not hold.

• Illegal operand value (29)

◦ x[rs1].type is 3 (uninitialised) and imm is not 0.

• Capability out of bound (28)

◦ x[rs1].type is 0, 1, or 3, and x[rs1].cursor + imm is not in the range [x[rs1].base,
x[rs1].end - size].

◦ x[rs1].type is 5 or 6, and x[rs1].cursor + imm is not in the range [x[rs1].base + 3 *
CLENBYTES, x[rs1].base + 33 * CLENBYTES - size].

• Store/AMO address misaligned (6)

◦ x[rs1].cursor + imm is not aligned to size bytes.

If no exception is raised:

1. Store x[rs2] to the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm + size) as
an integer.

2. The content in the CLENBYTES-byte aligned memory location [cbase, cend), which aliases
with the memory location [x[rs1].cursor + imm, x[rs1].cursor + imm + size), is set to
integer type, where cbase = (x[rs1].cursor + imm) & ~(CLENBYTES - 1) and cend = cbase +
CLENBYTES.

3. If x[rs1].type is 3 (uninitialised), set x[rs1].cursor to x[rs1].cursor + size.

▼ Note: undefined behaviour

The following load results are undefined:

• Load an integer from a memory location when the last capability store to its CLENBYTES
-byte aligned memory location is more recent than the last integer store to the memory
location itself.

36

7.2. Control Flow Instructions
In RV64IZicsr, conditional branch instructions (i.e., beq, bne, blt, bge, bltu, and bgeu), and
unconditional jump instructions (i.e., jal and jalr) are used to control the flow of execution. In
Capstone, these instructions are adjusted to support the situation where the program counter is a
capability.

7.2.1. Branch Instructions

067111214151920242531

0b1100011imm[4:1|11] (S)0b000rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 38. beq instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b001rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 39. bne instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b100rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 40. blt instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b101rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 41. bge instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b110rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 42. bltu instruction format

067111214151920242531

0b1100011imm[4:1|11] (S)0b111rs1 (I)rs2 (I)imm[12|10:5] (S)

Figure 43. bgeu instruction format

The following adjustments are made to these instructions:

• pc.cursor, instead of pc, is changed by the instruction.

7.2.2. Jump Instructions

067111231

0b1101111rd (I)imm[20|10:1|11|19:12] (S)

Figure 44. jal instruction format

37

06711121415192031

0b1100111rd (I)0b000rs1 (I)imm[11:0] (S)

Figure 45. jalr instruction format

The following adjustments are made to these instructions:

• pc.cursor + 4, instead of pc + 4, is written to x[rd].

• pc.cursor, instead of pc, is changed by the instruction.

7.3. Illegal Instructions
Some instructions in RV64IZicsr now raise illegal instruction (2) exceptions when executed in
Capstone-RISC-V Academic Version ISA, under all or some circumstances.

These instructions are:

• All instructions defined in the privileged ISA of RV64IZicsr.

• All instructions defined in the Zicsr extension, namely instructions that directly access
CSRs, when the CSR specified is not one defined in Capstone-RISC-V Academic Version, or
when the read/write constraints are not satisfied.

• ecall.

• ebreak.

38

https://riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

8. Interrupts and Exceptions

8.1. Exception and Exit Codes
▼ Note: where are the exception codes relevant?

For Pure Capstone, there is only one place where exception codes are relevant, which is the
argument to pass to the exception handler domain.

For TransCapstone, however, there are three places where we need to consider:

1. Handleable Exception: The argument to pass to the exception handler domain.

2. Unhandleable Exception: The value returned to the CAPENTER instruction in the user
process.

3. Interrupt: The exception code that the OS sees.

The argument passed to the exception handler domain will be in the register cra and a0, and
the exit code the user process receives will be in the register specified by exit_reg.

The exception code is what the exception handler domain receives as an argument when an
exception occurs on Pure Capstone or in TransCapstone secure world. It is an integer value that
indicates what the type of the exception is.

TransCapstone also has exit codes, which are the values returned to the CAPENTER instruction in
case the exception cannot be handled in the secure world.

We define the exception code and the exit code for each type of exception below. It aligns with the
exception codes defined in RV64IZicsr, where applicable, for ease of implementation and
interoperability.

Table 8. Exception codes and exit codes for Pure Capstone and TransCapstone secure world

Exception Exception code TransCapstone exit code

Instruction address misaligned 0 1

Instruction access fault 1 1

Illegal instruction 2 1

Breakpoint 3 1

Load address misaligned 4 1

Load access fault 5 1

Store/AMO address misaligned 6 1

Store/AMO access fault 7 1

Unexpected operand type 24 1

Invalid capability 25 1

39

Exception Exception code TransCapstone exit code

Unexpected capability type 26 1

Insufficient capability permissions 27 1

Capability out of bound 28 1

Illegal operand value 29 1

Insufficient system resources 30 1

Unhandleable exception 63 N/A in TransCapstone

For interrupts, the same encodings as in RV64IZicsr are used.

▼ Note: TransCapstone exit code

Currently, we use the same exit code 1 for all exception types to protect the confidentiality
of the secure world execution.

▼ Note: Implementation specified exception

For some of the exception code, where the corresponding exception is raised is not
specified as part of the ISA specification. Instead, it is up to the implementation to decide
where to raise the exception. These exceptions include:

• Insufficient system resources (30)

8.2. Exception Data
For Pure Capstone and the secure world in TransCapstone, the exception-related data is stored in
the tval CSR, similar to RV64IZicsr. The exception handler can use the value to decide how to
handle the exception. However, such data is available only for in-domain exception handling,
where the exception handling process does not involve a domain switch.

▼ Note: tval is only available in in-domain exception handling

For exception handling that crosses domain (i.e., when ceh is a valid sealed capability) or
world boundaries (i.e., when the normal world ends up handling the exception), the
exception data (i.e., the data in tval) is not available. This is to protect the confidentiality of
domain execution. Note that this design does not stop the excepted domain from selectively
trusting a different domain with such data.

For exceptions defined in RV64IZicsr, the same data as in it is written to tval. For the added
exceptions, the following data is written to tval:

Table 9. Exception data for Pure Capstone and TransCapstone secure world

40

Exception Data

Unexpected operand type (24) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Invalid capability (25) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Unexpected capability type (26) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Insufficient capability permissions
(27)

The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Capability out of bound (28) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Illegal operand value (29) The instruction itself (or the lowest XLEN bits if it is wider
than XLEN)

Unhandleable exception (63) N/A

8.3. Pure Capstone
For Pure Capstone, the handling of interrupts and exceptions is relatively straightforward.
Regardless of whether the event is an interrupt or an exception (and what the type of the interrupt
or exception is), the processor core will always transfer the control flow to the corresponding
handler domain (specified in the ceh register for exceptions and the cih register for interrupts).

The current context is saved and sealed in a sealed-return capability which is then supplied to the
exception/interrupt handler domain as an argument.

When exception/interrupt handling is complete, the exception/interrupt handler domain can use
the RETURN instruction to resume the execution of the excepted domain. This process resembles
that of a CALL-RETURN pair, except that it is asynchronous, rather than synchronous, to the
execution of the original domain.

The figure below shows the overview of domain switch in Pure Capstone, including
synchronous domain crossing and asynchronous interrupt/exception handling.

41

#domain-cross

Figure 46. Overview of domain switch in Pure Capstone

8.3.1. Interrupt Status

The cis CSR encodes the control and status associated with interrupts. The diagram below shows its
layout.

012345615

EIPEIETIPTIESIPSIEreserved (WPRI)

Figure 47. cis CSR layout

Each pair of xIP and xIE fields describes the status of the interrupt type x. The interrupt type x is
pending if the xIP field is set to 1, and enabled if the xIE field is set to 1. Currently, three types of
interrupts are supported: external interrupts (E), timer interrupts (T), and software interrupts (S).
The definitions for those interrupt types match those in RV64IZicsr.

All the fields are read-write, but only when cih contains a capability.

▼ Note: why not require a valid sealed capability?

We can require that the fields in cis are read-write only when cih contain a valid sealed
capability, but that would be more costly than a simple check of the type of data in cih.

8.3.2. Interrupt Delivery

The interrupt delivery process starts with a certain event typically asynchronous to the execution
of the hardware thread. The sources of such events include the external interrupt controller, the
timer, and other CPU cores, which correspond to the external, timer, and software interrupt types
(i.e., x = E, T, and S). When such an event occurs, the xIP field in the cis register is set to 1 to indicate
that the interrupt is pending.

At any point during the execution of a hardware thread, if any pair of xIP and xIE fields are both 1
and at the same time the cih register contains a capability, the interrupt is delivered to the interrupt
handler domain.

42

▼ Note: global interrupt enable/disable

In Pure Capstone, the cih register acts as a global interrupt-enable flag. If cih register does
not contain a capability, all interrupts are disabled globally.

8.3.3. Handling of Interrupts

The interrupt is ignored if any of the following conditions is met:

• cih is not a capability.

• cih.valid = 0 (invalid).

• cih.type != 4 (sealed capability).

• cih.async != 0 (synchronous).

Otherwise:

1. Swap pc with the content at the memory location [cih.base, cih.base + CLENBYTES).

2. Swap ceh with the content at the memory location [cih.base + CLENBYTES, cih.base + 2 *
CLENBYTES).

3. For i = 1, 2, …, 31, swap x[i] with the content at memory location [cih.base + (i + 1) *
CLENBYTES, cih.base + (i + 2) * CLENBYTES).

4. Set cih.type to 5 (sealed-return), cih.cursor to cih.base, cih.reg to 0, and cih.async to 2
(upon interrupt).

5. Write cih to the register cra, and cnull to the register cih.

6. Write the exception code to the register a0.

8.3.4. Handling of Exceptions

▼ Note: the stack of exception handler domains

Allowing anyone to set ceh can lead to DoS (when ceh is set to invalid values). Ideally, there
should be a stack of exception handlers. Each domain can only choose to push extra
exception handlers onto the stack. The bottom one will be provided by the kernel which is
responsible for the liveness of the system.

As this can be costly to implement, we limit the size of the stack to 2 for now, with the
bottom one provided by the interrupt handler domain cih.

Exceptions seem to be the dual of interrupts. Interrupt handling should be delegated
bottom-up, while exception handling should be delegated top-down.

Follow the interrupt handling procedure with exception code unhandleable exception (63) if

43

any of the following conditions is met:

• The ceh register does not contain a capability.

• The capability in ceh is invalid (valid = 0).

• The capability in ceh is not a sealed (type != 4), linear (type != 0), or non-linear capability
(type != 1).

• The capability in ceh is a sealed capability (type = 4) and the ceh.async field is not 0
(synchronous).

Otherwise:

If the content in ceh is a valid sealed capability:

1. Swap pc with the content at the memory location [ceh.base, ceh.base + CLENBYTES).

2. For i = 1, 2, …, 31, swap x[i] with the content at the memory location [ceh.base + (i +
1) * CLENBYTES, ceh.base + (i + 2) * CLENBYTES).

3. Set ceh.type to 5 (sealed-return), ceh.cursor to ceh.base, ceh.reg to 0, and ceh.async to 1
(upon exception).

4. Write ceh to the register cra, and cnull to the register ceh.

5. Swap ceh with the content at the memory location [cra.base + CLENBYTES, cra.base + 2 *
CLENBYTES).

6. Write the exception code to the register a0.

If the content is ceh is a valid executable non-linear capability or linear capability:

1. Write pc to epc.

2. Write ceh to pc. If ceh.type != 1, write cnull to ceh.

3. Write the exception code to cause.

4. Write extra exception data to tval.

Otherwise, the CPU core enters the state of panic.

▼ Note: sealing mechanism of in-domain exception handling

As the exception handler is in the same domain as the code that caused the exception, it is
not necessary to seal the content of csp (or any other general purpose registers), or
otherwise prevent the excepted code from accessing it.

44

8.3.5. Panic

When a CPU core is unable to handle an exception, it enters a state called panic.

The actual behaviour of the CPU core in this state is implementation-defined, but must be one
of the following:

• Reset.

• Enter an infinite loop.

• Scrub all general-purpose registers, and then load a capability that is not otherwise
available into pc, and a set of capabilities that are not otherwise available into general-
purpose registers.

The aim of the constraints above is to uphold the invariants of the capability model and in turn the
security guarantees of the system.

8.4. TransCapstone
TransCapstone retains the same interrupt and exception handling mechanism for the normal world
as in RV64IZicsr. For the secure world in TransCapstone, the handling of interrupts and exceptions
is more complex, and it becomes relevant whether the event is an interrupt or an exception.

▼ Note: overview of interrupt handling in the secure world

For interrupts, in order to prevent denial-of-service attacks by the secure world (e.g. a
timer interrupt), the processor core needs to always transfer the control back to the normal
world safely.

The interrupt will be translated to one in the normal world that occurs at the CAPENTER
instruction used to enter the secure world.

Since interrupts are typically relevant only to the management of system resources, the
interrupt should be transparent to both the secure world and the user process in the
normal world. In other words, the secure world will simply resume execution from where
it was interrupted after the interrupt is handled by the normal-world OS.

The figure below shows the overview of interrupt handling in TransCapstone.

45

Figure 48. Overview of interrupt handling in TransCapstone

▼ Note: overview of exception handling in the secure world

For exceptions, we want to give the secure world the chance to handle them first. If the
secure world manages to handle the exception, the normal world will not be involved. The
end result is that the whole exception or its handling is not even visible to the normal
world.

If the secure world fails to handle an exception (i.e., when it would end up panicking in the
case of Pure Capstone, such as when ceh is not a valid sealed capability), however, the
normal world will take over.

The exception will not be translated into an exception in the normal world, but instead
indicated in the exit code that the CAPENTER instruction in the user process receives. The
user process can then decide what to do based on the exit code (e.g., terminate the domain
in the secure world).

The figure below shows the overview of exception handling in TransCapstone.

Figure 49. Overview of exception handling in TransCapstone

46

Below we discuss the details of the handling of interrupts and exceptions generated in the secure
world.

8.4.1. Handling of Secure-World Interrupts

When an interrupt occurs in the secure world, the processor core directly saves the full context,
scrubs it, and exits to the normal world. It then generates a corresponding interrupt in the normal
world, and follows the normal-world interrupt handling process thereafter.

If the content in switch_cap satisfies the following conditions:

• switch_cap is a capability.

• switch_cap.valid is 1 (valid).

• switch_cap.type is 0 (linear) or 3 (uninitialised).

• switch_cap.base is aligned to CLENBYTES.

• 6 <=p switch_cap.perms holds.

• switch_cap.end - switch_cap.base >= CLENBYTES * 33 holds.

1. Store pc to the memory location [switch_cap.base, switch_cap.base + CLENBYTES).

2. Store ceh to the memory location [switch_cap.base + CLENBYTES, switch_cap.base + 2 *
CLENBYTES), and write cnull to ceh.

3. For i = 1, 2, …, 31, store the content of x[i] to the memory location [switch_cap.base +
(i + 1) * CLENBYTES, switch_cap.base + (i + 2) * CLENBYTES).

4. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp
respectively.

5. Set switch_cap.type to 4 (sealed), switch_cap.async to 2 (upon interrupt).

6. Write switch_cap to the register x[switch_reg], and cnull to switch_cap.

7. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

8. Set the cwrld register to 0 (normal world).

9. Trigger an interrupt in the normal world.

Otherwise:

1. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp
respectively.

2. Write cnull to x[switch_reg].

3. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

47

4. Set the cwrld register to 0 (normal world).

5. Trigger an interrupt in the normal world.

Note that in this case, there will be another exception in the normal world when the user process
resumes execution after the interrupt has been handled by the OS, due to the invalid switch_cap
value written to the CAPENTER operand.

8.4.2. Handling of Secure-World Exceptions

When an exception occurs, the processor core first attempts to handle the exception in the secure
world, in the similar way as in Pure Capstone. If this fails, the processor core saves the full context if
it can and exits to the normal world with a proper error code.

If the content in ceh satisfies the following conditions:

• ceh is a capability.

• ceh.type is 4 (sealed).

• ceh.valid is 1 (valid).

• ceh.async is 0 (synchronous)

1. Swap pc with the content at memory location [ceh.base, ceh.base + CLENBYTES).

2. For i = 1, 2, …, 31, swap x[i] with the content at the memory location [ceh.base + (i +
1) * CLENBYTES, ceh.base + (i + 2) * CLENBYTES).

3. Set the ceh.type to 5 (sealed-return), ceh.cursor to ceh.base, and ceh.async to 1 (upon
exception).

4. Write ceh to the register cra, and cnull to the register ceh.

5. Swap ceh with the content at the memory location [cra.base + CLENBYTES, cra.base + 2 *
CLENBYTES).

6. Write the exception code to the register a0.

Note that this is exactly the same as the handling of exceptions in Pure Capstone.

If the content is ceh is a valid executable non-linear capability or linear capability:

1. Write pc to epc.

2. Write ceh to pc. If ceh.type != 1, write cnull to ceh.

3. Write the exception code to cause.

4. Write extra exception data to tval.

Otherwise:

48

If the content in switch_cap satisfies the following conditions:

• switch_cap is a capability.

• switch_cap.valid is 1 (valid).

• switch_cap.type is 0 (linear) or 3 (uninitialised).

• switch_cap.base is aligned to CLENBYTES.

• 6 <=p switch_cap.perms holds.

• switch_cap.end - switch_cap.base >= CLENBYTES * 33 holds.

1. Store the current value of the program counter (pc) to the memory location
[switch_cap.base, switch_cap.base + CLENBYTES).

2. Store ceh to the memory location [switch_cap.base + CLENBYTES, switch_cap.base + 2 *
CLENBYTES), and write cnull to ceh.

3. For i = 1, 2, …, 31, store the content of x[i] to the memory location [switch_cap.base +
(i + 1) * CLENBYTES, switch_cap.base + (i + 2) * CLENBYTES).

4. Load the program counter pc and the stack pointer sp from normal_pc and normal_sp
respectively.

5. Write normal_pc + 4 and normal_sp to pc and sp respectively.

6. Set switch_cap.type to 4 (sealed), switch_cap.async to 1 (upon exception).

7. Write the content of switch_cap to x[switch_reg], and cnull to switch_cap.

8. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

9. Write the exit code to x[exit_reg].

10. Set the cwrld register to 0 (normal world).

Otherwise:

1. Write normal_pc + 4 and normal_sp to pc and sp respectively.

2. Write cnull to x[switch_reg].

3. Scrub the other general-purpose registers (i.e., write zero to x[i] where i != 2 and i !=
switch_reg).

4. Write the exit code to x[exit_reg].

5. Set the cwrld register to 0 (normal world).

▼ Note: comparison between synchronous and asynchronous exit

Compare this with CAPEXIT. We require that CAPEXIT be provided with a valid sealed-

49

return capability rather than use the latent capability in switch_cap. This allows us to
enforce containment of domains in the secure world, so that a domain is prevented from
escaping from the secure world when such a behaviour is undesired.

50

9. Memory Consistency Model

51

Appendix A: Instruction Listing

A.1. Capstone Instructions
067111214151920242531

0b1011011rdfunc3rs1rs2func7

Figure 50. Instruction format: R-type

06711121415192031

0b1011011rdfunc3rs1imm[11:0]

Figure 51. Instruction format: I-type

067111214151920242531

0b1011011imm[4:0]func3rs1rs2imm[11:5]

Figure 52. Instruction format: S-type

067111214151920242531

0b1011011rdfunc3rs1imm[4:0]func7

Figure 53. Instruction format: RI-type

Table 10. Capability manipulation instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm [4:0] imm[11:0] World Variant

REVOKE R 001 0000000 C - - - - * *

SHRINK R 001 0000001 I I C - - * *

TIGHTEN RI 001 0000010 C - C Z - * *

DELIN R 001 0000011 - - C - - * *

LCC RI 001 0000100 C - I Z - * *

SCC R 001 0000101 I - C - - * *

SPLIT R 001 0000110 C I C - - * *

SEAL R 001 0000111 C - C - - * *

MREV R 001 0001000 C - C - - * *

INIT R 001 0001001 C I C - - * *

MOVC R 001 0001010 C - C - - * *

DROP R 001 0001011 C - - - - * *

CINCOFFSET R 001 0001100 C I C - - * *

CINCOFFSETIMM I 010 - C - C - S * *

Table 11. Memory access instructions

52

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

LDC I 0 011 - I - C S N T

I 1 011 - C - C S N T

I - 011 - C - C S S T

I - 011 - C - C S - P

STC S 0 100 - I C - S N T

S 1 100 - C C - S N T

S - 100 - C C - S S T

S - 100 - C C - S - P

Table 12. Control flow instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

CALL R 001 0100000 C - C - S T

R 001 0100000 C - C - - P

RETURN R 001 0100001 C I - - S T

R 001 0100001 C I - - - P

CJALR I 101 - C - C S S T

I 101 - C - C S - P

CBNZ I 110 - I - C S S T

I 110 - I - C S - P

CAPENTER R 001 0100010 C - I - N T

CAPEXIT R 001 0100011 C I - - S T

Table 13. Control and status instructions

Mnemonic Format Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

CCSRRW I 111 - C - C Z * *

A.2. Extended RV64IZicsr Memory Access Instructions
06711121415192031

0b0000011rdfunc3rs1imm[11:0]

Figure 54. Instruction format: I-type

067111214151920242531

0b0100011imm[4:0]func3rs1rs2imm[11:5]

Figure 55. Instruction format: S-type

Table 14. Extended RV64IZicsr load instructions

53

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

lb I 0 000 - I - I S N T

I 1 000 - C - I S N T

I - 000 - C - I S S T

I - 000 - C - I S - P

lh I 0 001 - I - I S N T

I 1 001 - C - I S N T

I - 001 - C - I S S T

I - 001 - C - I S - P

lw I 0 010 - I - I S N T

I 1 010 - C - I S N T

I - 010 - C - I S S T

I - 010 - C - I S - P

ld I 0 011 - I - I S N T

I 1 011 - C - I S N T

I - 011 - C - I S S T

I - 011 - C - I S - P

lbu I 0 100 - I - I S N T

I 1 100 - C - I S N T

I - 100 - C - I S S T

I - 100 - C - I S - P

lhu I 0 101 - I - I S N T

I 1 101 - C - I S N T

I - 101 - C - I S S T

I - 101 - C - I S - P

lwu I 0 110 - I - I S N T

I 1 110 - C - I S N T

I - 110 - C - I S S T

I - 110 - C - I S - P

Table 15. Extended RV64IZicsr store instructions

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

sb S 0 000 - I I - S N T

S 1 000 - C I - S N T

S - 000 - C I - S S T

54

Mnemonic Format emode Func3 Func7 rs1 rs2 rd imm[11:0] World Variant

S - 000 - C I - S - P

sh S 0 001 - I I - S N T

S 1 001 - C I - S N T

S - 001 - C I - S S T

S - 001 - C I - S - P

sw S 0 010 - I I - S N T

S 1 010 - C I - S N T

S - 010 - C I - S S T

S - 010 - C I - S - P

sd S 0 011 - I I - S N T

S 1 011 - C I - S N T

S - 011 - C I - S S T

S - 011 - C I - S - P

▼ Note: the meaning of abbreviations in the table

For instruction operands:

I

Integer register

C

Capability register

-

Not used

For immediates:

S

Sign-extended

Z

Zero-extended

-

Not used

For worlds:

N

Normal world

55

S

Secure world

*

Either world

For variants:

P

Pure Capstone

T

TransCapstone

*

Either variant

56

Appendix B: Comparison with Other
Capability-Based ISA Extensions to RISC-V
Similar to Capstone-RISC-V Academic Version, CHERI-RISC-V [1] and CHERIoT [2] are also capability-
based ISA extension to RISC-V, both derived from the CHERI architecture. CHERI-RISC-V is designed
for general-purpose computing, whereas CHERIoT builds on RV32E and specialises in low-cost
embedded systems such as IoT devices.

We discuss the commonalities and differences between Capstone-RISC-V Academic Version, CHERI-
RISC-V, and CHERIoT in this appendix, in the hope to shed light on how to allow Capstone-RISC-V
Academic Version to coexist with the other two ISA extensions in the RISC-V ecosystem.

B.1. Commonalities
Capstone-RISC-V Academic Version, CHERI-RISC-V, and CHERIoT all use architectural capabilities to
allow capabilities to be stored in either registers or memory, with hardware-enforced provenance
and monotonicity guarantees as well as bounds checks on capability dereferences. As a result, some
of the instructions in the three ISAs have obvious and direct correspondence, as summarised in the
following table.

Table 16. Correspondence between Capstone-RISC-V Academic Version, CHERI-RISC-V, and CHERIoT
instructions

Capstone-RISC-V Academic
Version instruction(s)

CHERI-RISC-V instruction(s) CHERIoT instruction(s)

DROP CClearTag CClearTag

CJALR CJALR CJALR

CALL CInvoke -

SEAL CSealEntry -

CIncOffset CIncOffset CIncAddr

CIncOffsetImm CIncOffsetImm CIncAddrImm

LCC CGetAddr, CGetBase, CGetType,
CGetPerm

CGetAddr, CGetBase, CGetTop,
CGetType, CGetPerm

SCC CSetAddr CSetAddr

TIGHTEN CAndPerm CAndPerm

SHRINK CSetBounds, CSetBoundsExact CSetBounds, CSetBoundsExact

MOVC CMove CMove

LDC LC.CAP, LC.DDC, CLC CLC

STC SC.CAP, LC.DDC, CSC CSC

L[BHWD] L[BHWD][U].CAP L[BHWD][U]

S[BHWD] S[BHWD][U].CAP S[BHWD][U]

57

Capstone-RISC-V Academic
Version instruction(s)

CHERI-RISC-V instruction(s) CHERIoT instruction(s)

CCSRRW CSpecialRW CSpecialRW

Most of the shared instructions are the ones for capability manipulations, as a result of having
similar capability fields across the three ISA extensions. The basic use of capabilities, namely,
explicit capability-based memory accesses, is also common in all three ISA extensions.

B.2. Differences
The differences stem from the different sets of extra features and capability types supported by the
ISA extensions. For example, Capstone-RISC-V Academic Version supports linear capabilities and
revocation through revocation capabilities that are found in neither CHERI-RISC-V nor CHERIoT.
Moreover, CHERIoT does not support hybrid-mode memory accesses that use raw addresses in
place of explicit capabilities, or domain switches that involve atomic swapping of sealed execution
contexts, and hence lacks the relevant instructions.

While Capstone-RISC-V Academic Version and CHERI-RISC-V both have hybrid mode support, they
adopt different models, with Capstone-RISC-V Academic Version (more specifically, TransCapstone)
using a two-world model that aligns with its high-level goal of isolating pure capability code from
privileged legacy code. Sealed capabilities in Capstone-RISC-V Academic Version are also different
from those in CHERI-RISC-V and CHERIoT. Capstone-RISC-V Academic Version uses sealed
capabilities exclusively for protecting domain execution contexts, allowing unsealing only upon
domain switching, whereas the other two ISA extensions find more generic use for them and allow
software to unseal them explicitly through an instruction.

The feature sets of the three ISA extensions are summarised in the table below.

Table 17. Feature sets of Capstone-RISC-V Academic Version, CHERI-RISC-V, and CHERIoT

Feature Capstone-RISC-V
Academic Version

CHERI-RISC-V CHERIoT

Linear
capabilities

Y - -

Revocation Revocation capabilities
with tracked derivation

Local capabilities Local capabilities,
revocation bits bound to
object memory locations,
local capabilities

Capability
load

Anyone can load
capabilities

Permit_Load_Capability
required

Permit_Load_Capability
required

Capability
store

Anyone can store
capabilities

Permit_Store_Capability or
Permit_Store_Local_Capabil
ity required

Permit_Store_Capability or
Permit_Store_Local_Capabil
ity required

Memory
zeroing

Uninitialised capabilities - -

58

Feature Capstone-RISC-V
Academic Version

CHERI-RISC-V CHERIoT

Software-
defined
fields

- Y Y

Hybrid
mode

Separate normal and
secure worlds, with MMU
for integer address
accesses in normal world

Default data capability for
integer address accesses

-

Explicit
sealing

Anyone can seal Permit_Seal required Permit_Seal required

Implicit
sealing
upon
domain
switching

Y - -

Explicit
unsealing

- Matching otype and
Permit_Unseal required

Matching otype and
Permit_Unseal required

Implicit
unsealing
upon
domain
switching

Anyone can perform
domain switching

Matching otype and
Permit_CInvoke sealed entry
capabilities for code and
data required

-

Bibliography
▪ [1] Robert N M Watson, Peter G Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary,

Jonathan Anderson, John Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis,
Lee Eisen, Nathaniel Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou, Ben Laurie, A
Theodore Markettos, Simon W Moore, Steven J Murdoch, Kyndylan Nienhuis, Robert Norton,
Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia. Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture (Version 8).

▪ [2] Saar Amar, Tony Chen, David Chisnall, Felix Domke, Nathaniel Wesley Filardo, Kunyan Liu,
Robert M Norton, Yucong Tao, Robert N M Watson, and Hongyan Xia. CHERIoT: Rethinking
security for low-cost embedded systems.

59

Appendix C: Assembly Code Examples

60

Appendix D: Abstract Binary Interface (Non-
Normative)

61

	The Capstone-RISC-V Academic Version Instruction Set Reference
	Table of Contents
	1. Introduction
	1.1. Properties to Support
	1.2. Major Design Elements
	1.3. Capstone-RISC-V Academic Version ISA Overview
	1.4. Assembly Mnemonics
	1.5. Notations
	1.6. Bibliography

	2. Programming Model
	2.1. Capabilities
	2.2. Extension to General-Purpose Registers
	2.3. Extension to Other Registers
	2.4. Added Registers
	2.5. Extension to Memory
	2.6. Instruction Set
	2.7. System Reset

	3. Capability Manipulation Instructions
	3.1. Cursor, Bounds, and Permissions Manipulation
	3.2. Type Manipulation
	3.3. Dropping
	3.4. Revocation

	4. Memory Access Instructions
	4.1. Load Capabilities
	4.2. Store Capabilities

	5. Control Flow Instructions
	5.1. Jump to Capabilities
	5.2. Domain Crossing

	6. Control and Status Instructions
	7. Adjustments to Existing Instructions
	7.1. Memory Access Instructions
	7.2. Control Flow Instructions
	7.3. Illegal Instructions

	8. Interrupts and Exceptions
	8.1. Exception and Exit Codes
	8.2. Exception Data
	8.3. Pure Capstone
	8.4. TransCapstone

	9. Memory Consistency Model
	Appendix A: Instruction Listing
	A.1. Capstone Instructions
	A.2. Extended RV64IZicsr Memory Access Instructions

	Appendix B: Comparison with Other Capability-Based ISA Extensions to RISC-V
	B.1. Commonalities
	B.2. Differences
	Bibliography

	Appendix C: Assembly Code Examples
	Appendix D: Abstract Binary Interface (Non-Normative)

